Unsupervised Spectral Learning of FSTs
نویسندگان
چکیده
Finite-State Transducers (FST) are a standard tool for modeling paired inputoutput sequences and are used in numerous applications, ranging from computational biology to natural language processing. Recently Balle et al. [4] presented a spectral algorithm for learning FST from samples of aligned input-output sequences. In this paper we address the more realistic, yet challenging setting where the alignments are unknown to the learning algorithm. We frame FST learning as finding a low rank Hankel matrix satisfying constraints derived from observable statistics. Under this formulation, we provide identifiability results for FST distributions. Then, following previous work on rank minimization, we propose a regularized convex relaxation of this objective which is based on minimizing a nuclear norm penalty subject to linear constraints and can be solved efficiently.
منابع مشابه
Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...
متن کاملA Spectral Learning Algorithm for Finite State Transducers
Finite-State Transducers (FSTs) are a popular tool for modeling paired input-output sequences, and have numerous applications in real-world problems. Most training algorithms for learning FSTs rely on gradient-based or EM optimizations which can be computationally expensive and suffer from local optima issues. Recently, Hsu et al. [13] proposed a spectral method for learning Hidden Markov Model...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کامل