Two-Level Overlapping Schwarz Algorithms for a Staggered Discontinuous Galerkin Method

نویسندگان

  • Eric T. Chung
  • Hyea Hyun Kim
  • Olof B. Widlund
چکیده

Two overlapping Schwarz algorithms are developed for a discontinuous Galerkin finite element approximation of second order scalar elliptic problems in both two and three dimensions. The discontinuous Galerkin formulation is based on a staggered discretization introduced by Chung and Engquist [SIAM J. Numer. Anal., 47 (2009), pp. 3820–3848] for the acoustic wave equation. Two types of coarse problems are introduced for the two-level Schwarz algorithms. The first is built on a nonoverlapping subdomain partition, which allows quite general subdomain partitions, and the second on introducing an additional coarse triangulation that can also be quite independent of the fine triangulation. Condition number bounds are established and numerical results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schwarz Domain Decomposition Preconditioners for Interior Penalty Approximations of Elliptic Problems

We present a two-level non-overlapping additive Schwarz method for Discontinuous Galerkin approximations of elliptic problems. In particular, a two level-method for both symmetric and non-symmetric schemes will be considered and some interesting features, which have no analog in the conforming case, will be discussed. Numerical experiments on non-matching grids will be presented.

متن کامل

Preconditioning High-Order Discontinuous Galerkin Discretizations of Elliptic Problems

In recent years, attention has been devoted to the development of efficient iterative solvers for the solution of the linear system of equations arising from the discontinuous Galerkin (DG) discretization of a range of model problems. In the framework of two level preconditioners, scalable non-overlapping Schwarz methods have been proposed and analyzed for the h–version of the DG method in the ...

متن کامل

Two-Level Schwarz Preconditioners for Super Penalty Discontinuous Galerkin Methods

We extend the construction and analysis of the non-overlapping Schwarz preconditioners proposed in [2, 3] to the (non-consistent) super penalty discontinuous Galerkin methods introduced in [5] and [8]. We show that the resulting preconditioners are scalable, and we provide the convergence estimates. We also present numerical experiments confirming the sharpness of the theoretical results. AMS s...

متن کامل

Schwarz Domain Decomposition Preconditioners for Plane Wave Discontinuous Galerkin Methods

We construct Schwarz domain decomposition preconditioners for plane wave discontinuous Galerkin methods for Helmholtz boundary value problems. In particular, we consider additive and multiplicative non-overlapping Schwarz methods. Numerical tests show good performance of these preconditioners when solving the linear system of equations with GMRES.

متن کامل

On Non-overlapping Domain Decomposition Preconditioners for Discontinuous Galerkin Finite Element Methods in H-type Norms

Abstract. We analyse the spectral bounds of non-overlapping domain decomposition additive Schwarz preconditioners for hp-version discontinuous Galerkin finite element methods in H-type norms. Using original approximation results for discontinuous finite element spaces, it is found that these preconditioners yield a condition number bound of order 1 + Hp/hq, where H and h are respectively the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013