On Prime Near-Rings with Generalized Derivation

نویسنده

  • Howard E. Bell
چکیده

LetN be a zero-symmetric left near-ring, not necessarily with amultiplicative identity element; and letZ be its multiplicative center. DefineN to be 3-prime if for all a, b ∈ N\{0}, aNb / {0}; and callN 2-torsion-free if N, has no elements of order 2. A derivation onN is an additive endomorphism D of N such that D xy xD y D x y for all x, y ∈ N. A generalized derivation f with associated derivation D is an additive endomorphism f : N → N such that f xy f x y xD y for all x, y ∈ N. In the case of rings, generalized derivations have received significant attention in recent years. In 1 , we proved the following.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Jordan left derivations and generalized Jordan left derivations of matrix rings

Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...

متن کامل

On generalized left (alpha, beta)-derivations in rings

Let $R$ be a 2-torsion free ring and $U$ be a square closed Lie ideal of $R$. Suppose that $alpha, beta$ are automorphisms of $R$. An additive mapping $delta: R longrightarrow R$ is said to be a Jordan left $(alpha,beta)$-derivation of $R$ if $delta(x^2)=alpha(x)delta(x)+beta(x)delta(x)$ holds for all $xin R$. In this paper it is established that if $R$ admits an additive mapping $G : Rlongrigh...

متن کامل

Left Annihilator of Identities Involving Generalized Derivations in Prime Rings

Let $R$ be a prime ring with its Utumi ring of quotients $U$,  $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...

متن کامل

Generalized Derivations on Prime Near Rings

Let N be a near ring. An additive mapping f : N → N is said to be a right generalized (resp., left generalized) derivation with associated derivation d onN if f(xy) = f(x)y + xd(y) (resp., f(xy) = d(x)y + xf(y)) for all x, y ∈ N. A mapping f : N → N is said to be a generalized derivation with associated derivation d onN iff is both a right generalized and a left generalized derivation with asso...

متن کامل

On 3-prime Near-rings with Generalized Derivations

We prove some theorems in the setting of a 3-prime near-ring admitting a suitably constrained generalized derivation, thereby extending some known results on derivations. Moreover, we give an example proving that the hypothesis of 3-primeness is necessary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008