Predicting stock market index using fusion of machine learning techniques
نویسندگان
چکیده
The paper focuses on the task of predicting future values of stock market index. Two indices namely CNX Nifty and S&P Bombay Stock Exchange (BSE) Sensex from Indian stock markets are selected for experimental evaluation. Experiments are based on 10 years of historical data of these two indices. The predictions are made for 1–10, 15 and 30 days in advance. The paper proposes two stage fusion approach involving Support Vector Regression (SVR) in the first stage. The second stage of the fusion approach uses Artificial Neural Network (ANN), Random Forest (RF) and SVR resulting into SVR–ANN, SVR–RF and SVR–SVR fusion prediction models. The prediction performance of these hybrid models is compared with the single stage scenarios where ANN, RF and SVR are used single-handedly. Ten technical indicators are selected as the inputs to each of the prediction models. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Forecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملProvide a stock price forecasting model using deep learning algorithms and its use in the pricing of Islamic bank stocks
Predicting stock prices is complicated; various components, such as the general state of the economy, political events, and investor expectations, affect the stock market. The stock market is in fact a chaotic nonlinear system that depends on various political, economic and psychological factors. To overcome the limitations of traditional analysis techniques in predicting nonlinear patterns, ex...
متن کاملMarket Index and Stock Price Direction Prediction using Machine Learning Techniques: An empirical study on the KOSPI and HSI
The prediction of a stock market direction may serve as an early recommendation system for short-term investors and as an early financial distress warning system for long-term shareholders. In this paper, we propose an empirical study on the Korean and Hong Kong stock market with an integrated machine learning framework that employs Principal Component Analysis (PCA) and Support Vector Machine ...
متن کاملPredicting the direction of stock market prices using random forest
Predicting trends in stock market prices has been an area of interest for researchers for many years due to its complex and dynamic nature. Intrinsic volatility in stock market across the globe makes the task of prediction challenging. Forecasting and diffusion modeling, although effective can’t be the panacea to the diverse range of problems encountered in prediction, short-term or otherwise. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 42 شماره
صفحات -
تاریخ انتشار 2015