Global well-posedness and scattering for the radial, defocusing, cubic wave equation with almost sharp initial data

نویسنده

  • Benjamin Dodson
چکیده

In this paper we prove that the cubic wave equation is globally well posed and scattering for radial initial data satisfying ‖|x|2ǫu0‖Ḣ1/2+ǫ(R3)+‖u0‖Ḣ1/2+ǫ(R3)+‖|x| 2ǫu1‖Ḣ−1/2+ǫ(R3)+‖u1‖Ḣ−1/2+ǫ(R3) < ∞. (0.1) This space of functions is slightly smaller than the general critical space, Ḣ× Ḣ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Well-posedness for the Radial Defocusing Cubic Wave Equation on R and for Rough Data

We prove global well-posedness for the radial defocusing cubic wave equation

متن کامل

Global Well-posedness and Scattering for Defocusing Energy-critical Nls in the Exterior of Balls with Radial Data

We consider the defocusing energy-critical NLS in the exterior of the unit ball in three dimensions. For the initial value problem with Dirichlet boundary condition we prove global well-posedness and scattering with large radial initial data in the Sobolev space Ḣ1 0 . We also point out that the same strategy can be used to treat the energy-supercritical NLS in the exterior of balls with Dirich...

متن کامل

Global Well-posedness and Scattering for the Mass-critical Nonlinear Schrödinger Equation for Radial Data in High Dimensions

We establish global well-posedness and scattering for solutions to the defocusing mass-critical (pseudoconformal) nonlinear Schrödinger equation iut + ∆u = |u|4/nu for large spherically symmetric Lx(R n) initial data in dimensions n ≥ 3. After using the reductions in [32] to reduce to eliminating blowup solutions which are almost periodic modulo scaling, we obtain a frequency-localized Morawetz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016