A Generic Algorithm for Learning Symbolic Automata from Membership Queries
نویسندگان
چکیده
We present a generic algorithmic scheme for learning languages defined over large or infinite alphabets such as bounded subsets of N and R, or Boolean vectors of high dimension. These languages are accepted by deterministic symbolic automata that use predicates to label transitions, forming a finite partition of the alphabet for every state. Our learning algorithm, an adaptation of Angluin’s L∗, combines standard automaton learning by state characterization, with the learning of the static predicates that define the alphabet partitions. We do not assume a helpful teacher who provides minimal counter-examples when the conjectured automaton is incorrect. Instead we use random sampling to obtain PAC (probably approximately correct) learnability. We have implemented the algorithm for numerical and Boolean alphabets and the preliminary performance results show that languages over large or infinite alphabets can be learned under more realistic assumptions.
منابع مشابه
Relational Databases Query Optimization using Hybrid Evolutionary Algorithm
Optimizing the database queries is one of hard research problems. Exhaustive search techniques like dynamic programming is suitable for queries with a few relations, but by increasing the number of relations in query, much use of memory and processing is needed, and the use of these methods is not suitable, so we have to use random and evolutionary methods. The use of evolutionary methods, beca...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملA Generic Algorithm for Learning Symbolic Automata from Membrship Queries
We present a generic algorithmic scheme for learning languages defined over large or infinite alphabets such as bounded subsets of N and R, or Boolean vectors of high dimension. These languages are accepted by deterministic symbolic automata that use predicates to label transitions, forming a finite partition of the alphabet for every state. Our learning algorithm, an adaptation of Angluin’s L∗...
متن کاملLearning Minimal Deterministic Automata from Inexperienced Teachers
A prominent learning algorithm is Angluin’s L∗ algorithm, which allows to learn a minimal deterministic automaton using so-called membership and equivalence queries addressed to a teacher. In many applications, however, a teacher might be unable to answer some of the membership queries because parts of the object to learn are not completely specified, not observable, it is too expensive to reso...
متن کاملL Algorithms for Learning Finite Automata from Queries: a Unied View
In this survey we compare several known variants of the algorithm for learning deterministic nite automata via membership and equivalence queries. We believe that our presentation makes it easier to understand what is going on and what the di erences between the various algorithms mean. We also include the comparative analysis of the algorithms, review some known lower bounds, prove a new one, ...
متن کامل