The Re-Encoding Transformation in Algebraic List-Decoding of Reed-Solomon Codes

نویسندگان

  • Ralf Koetter
  • Jun Ma
  • Alexander Vardy
چکیده

The main computational steps in algebraic softdecoding, as well as Sudan-type list-decoding, of Reed-Solomon codes are bivariate polynomial interpolation and factorization. We introduce a computational technique, based upon re-encoding and coordinate transformation, that significantly reduces the complexity of the bivariate interpolation procedure. This re-encoding and coordinate transformation converts the original interpolation problem into another reduced interpolation problem, which is orders of magnitude smaller than the original one. A rigorous proof is presented to show that the two interpolation problems are indeed equivalent. An efficient factorization procedure that applies directly to the reduced interpolation problem is also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Interpolation and Factorization in Algebraic Soft-Decision Decoding of Reed-Solomon Codes

Algebraic soft-decision decoding of Reed-Solomon codes delivers promising coding gains over conventional hard-decision decoding. The main computational steps in algebraic soft-decoding (as well as Sudan-type list-decoding) are bivariate interpolation and factorization. We discuss a new computational technique, based upon re-encoding and coordinate transformation, that significantly reduces the ...

متن کامل

A Complexity Reducing Transformation in Algebraic List Decoding of Reed-Solomon Codes

The main computational steps in algebraic soft-decoding, as well as Sudan-type list-decoding, of ReedSolomon codes are interpolation and factorization. A series of transformations is given for the interpolation problem that arises in these decoding algorithms. These transformations reduce the space and time complexity to a small fraction of the complexity of the original interpolation problem. ...

متن کامل

Cyclotomic function fields, Artin–Frobenius automorphisms, and list error correction with optimal rate

Algebraic error-correcting codes that achieve the optimal trade-off between rate and fraction of errors corrected (in the model of list decoding) were recently constructed by a careful “folding” of the Reed-Solomon code. The “low-degree” nature of this folding operation was crucial to the list decoding algorithm. We show how such folding schemes useful for list decoding arise out of the Artin-F...

متن کامل

Algebraic Soft Decoding Algorithms for Reed-Solomon Codes Using Module

The interpolation based algebraic decoding for Reed-Solomon (RS) codes can correct errors beyond half of the code’s minimum Hamming distance. Using soft information, algebraic soft decoding (ASD) can further enhance the performance. This paper introduces two ASD algorithms that utilize a new interpolation technique, the module minimization (MM). Achieving the desirable Gröbner basis, the MM int...

متن کامل

Efficient root-finding algorithm with application to list decoding of Algebraic-Geometric codes

A list decoding for an error-correcting code is a decoding algorithm that generates a list of codewords within a Hamming distance from the received vector, where can be greater than the error-correction bound. In [18], a list-decoding procedure for Reed–Solomon codes [19] was generalized to algebraic–geometric codes. A recent work [8] gives improved list decodings for Reed–Solomon codes and alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2011