Normalized Dynamic Eigenvalues for Scalar Time-varying Sytems

نویسنده

  • P. van der Kloet
چکیده

Linear time-varying systems are considered. The associated homogeneous time-varying differential equation is assumed to be given in a frame of reference such that the system matrix is upper triangular. An analytic expression for the solution then can be derived. For a higher order SISO system this solution is a sum of modes, each mode being the product of constant amplitude and an exponential function whose argument contains the normalized dynamic eigenvalues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Eigenvalues for Scalar Linear Time-Varying Systems

In this paper, an algorithm is derived for computing the earlier introduced eigenvalues of scalar varying systems. These new types of eigenvalues are key quantities for describing the dynamic behavior of such systems. They generalize the conventional antipodes pertaining to constant systems. Essentially, the algorithm performs successive Riccati transformations that gradually triangularize the ...

متن کامل

Canonical Realizations of Linear Time-Varying Systems

In this article, general scalar linear time-varying systems are addressed. In particular, canonical realizations with integrators, multipliers and adders are presented. Essentially, it is shown that the well-known configurations for constant systems can be generalized to the time-varying context by replacing the conventional eigenvalues by the earlier introduced dynamic eigenvalues. However, it...

متن کامل

The Cauchy-Floquet factorization by successive Riccati transformations

Scalar linear time-varying systems are addressed. In particular, a new factorization method for the associated scalar polynomial system differential operator is presented. It differs from the classical results due to Cauchy and Floquet, in that it is based upon successive Riccati transformations of the Frobenius companion system matrix. As a consequence, the factorization is obtained in terms o...

متن کامل

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

Normalized laplacian spectrum of two new types of join graphs

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002