Quiver Flag Varieties and Multigraded Linear Series

نویسنده

  • ALASTAIR CRAW
چکیده

This paper introduces a class of smooth projective varieties that generalise and share many properties with partial flag varieties of type A. The quiver flag variety Mθ(Q, r) of a finite acyclic quiver Q (with a unique source) and a dimension vector r is a fine moduli space of stable representations of Q. Quiver flag varieties are Mori Dream Spaces, they are obtained via a tower of Grassmann bundles, and their bounded derived category of coherent sheaves is generated by a tilting bundle. We define the multigraded linear series of a weakly exceptional sequence of locally free sheaves E = (OX , E1, . . . , Eρ) on a projective scheme X to be the quiver flag variety |E | := Mθ(Q, r) of a pair (Q, r) encoded by E . When each Ei is globally generated, we obtain a morphism φ|E | : X → |E | realising each Ei as the pullback of a tautological bundle. As an application we introduce the multigraded Plücker embedding of a quiver flag variety

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell Decompositions of Quiver Flag Varieties for Nilpotent Representations of the Oriented Cycle

Generalizing Schubert cells in type A and a cell decomposition if Springer fibres in type A found by L. Fresse we prove that varieties of complete flags in nilpotent representations of an oriented cycle admit an affine cell decomposition parametrized by multi-tableaux. We show that they carry a torus operation and describe the T -equivariant cohomology using GoreskyKottwitz-MacPherson-theory. A...

متن کامل

Smoothing of Quiver Varieties

We show that Gorenstein singularities that are cones over singular Fano varieties provided by so-called flag quivers are smoothable in codimension three. Moreover, we give a precise characterization about the smoothability in codimension three of the Fano variety itself.

متن کامل

Multiplicative formulas in Cohomology of G/P and in quiver representations

Consider a partial flag variety X which is not a grassmaninan. Consider also its cohomology ring H∗(X,Z) endowed with the base formed by the Poincaré dual classes of the Schubert varieties. In [Ricar], E. Richmond showed that some coefficient structure of the product in H∗(X,Z) are products of two such coefficients for smaller flag varieties. Consider now a quiver without oriented cycle. If α a...

متن کامل

Problems on Quiver Varieties

(1) Study the class of hyper-Kähler manifolds which are hyper-Kähler reductions of finite dimensional quaternion vector spaces by products of unitary groups. (Probably it is better to assume that the action is linear.) Besides quiver varieties, hyper-Kähler toric varieties in the sense of Bielawski and Dancer [2] are such examples. When the quotients are nonsingular ? How much of geometric prop...

متن کامل

Perverse Sheaves, Koszul Ic-modules, and the Quiver for the Category O

For a stratified topological space we introduce the category of IC-modules, which are linear algebra devices with the relations described by the equation d = 0. We prove that the category of (mixed) IC-modules is equivalent to the category of (mixed) perverse sheaves for flag varieties. As an application, we describe an algorithm calculating the quiver underlying the BGG category O for arbitrar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009