Percentile Smoothing Using Piecewise Polynomials, with Covariates
نویسندگان
چکیده
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ibs.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.
منابع مشابه
Analysis of Heart Transplant Survival Data Using Generalized Additive Models
The Stanford Heart Transplant data were collected to model survival in patients using penalized smoothing splines for covariates whose values change over the course of the study. The basic idea of the present study is to use a logistic regression model and a generalized additive model with B-splines to estimate the survival function. We model survival time as a function of patient covariates an...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملShape constrained estimation using nonnegative splines
We consider the problem of nonparametric estimation of unknown smooth functions in the presence of restrictions on the shape of the estimator and on its support, using polynomial splines. We provide a general computational framework that treats these estimation problems in a unified manner, without the limitations of the existing methods. Applications of our approach include computing optimal s...
متن کاملA Generalization of Histogram Type Estimators
We introduce simple nonparametric density estimators that generalize the classical histogram and frequency polygon. The new estimators are expressed as linear combination of density functions that are piecewise polynomials, where the coe cients are optimally chosen in order to minimize the integrated square error of the estimator. We establish the asymptotic behaviour of the proposed estimators...
متن کاملNonparametric Bayesian hazard rate models based on penalized splines
Extensions of the traditional Cox proportional hazard model, concerning the following features are often desirable in applications: Simultaneous nonparametric estimation of baseline hazard and usual fixed covariate effects, modelling and detection of time–varying covariate effects and nonlinear functional forms of metrical covariates, and inclusion of frailty components. In this paper, we devel...
متن کامل