Relative Cohen–macaulayness of Bigraded Modules

نویسنده

  • AHAD RAHIMI
چکیده

In this paper we study the local cohomology of all finitely generated bigraded modules over a standard bigraded polynomial ring which have only one nonvanishing local cohomology with respect to one of the irrelevant bigraded ideals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanishing of Ext-Functors and Faltings’ Annihilator Theorem for relative Cohen-Macaulay modules

et  be a commutative Noetherian ring,  and  two ideals of  and  a finite -module. In this paper, we have studied the vanishing and relative Cohen-Macaulyness of the functor for relative Cohen-Macauly filtered modules with respect to the ideal  (RCMF). We have shown that the for relative Cohen-Macaulay modules holds for any relative Cohen-Macauly module with respect to  with ........

متن کامل

Cohen-macaulayness of Rees Algebras of Modules

We provide the sufficient conditions for Rees algebras of modules to be Cohen-Macaulay, which has been proven in the case of Rees algebras of ideals in [11] and [4]. As it turns out the generalization from ideals to modules is not just a routine generalization, but requires a great deal of technical development. We use the technique of generic Bourbaki ideals introduced by Simis, Ulrich and Vas...

متن کامل

Local cohomology modules of bigraded Rees algebras

Formulas are obtained in terms of complete reductions for the bigraded components of local cohomology modules of bigraded Rees algebras of 0-dimensional ideals in 2-dimensional Cohen-Macaulay local rings. As a consequence, cohomological expressions for the coefficients of the Bhattacharya polynomial of such ideals are obtained.

متن کامل

Gorenstein Injective Dimensions and Cohen-Macaulayness

Let (R,m) be a commutative noetherian local ring. In this paper we investigate the existence of a finitely generated R-module of finite Gorenstein dimension when R is Cohen-Macaulay. We study the Gorenstein injective dimension of local cohomology of complexes and next we show that if R is a non-Artinian Cohen-Macaulay ring, which does not have the minimal multiplicity, then R has a finite gener...

متن کامل

Grothendieck-serre Formula and Bigraded Cohen-macaulay Rees Algebras

The Grothendieck-Serre formula for the difference between the Hilbert function and Hilbert polynomial of a graded algebra is generalized for bigraded standard algebras. This is used to get a similar formula for the difference between the Bhattacharya function and Bhattacharya polynomial of two m-primary ideals I and J in a local ring (A, m) in terms of local cohomology modules of Rees algebras ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008