Identification and Biochemical Properties of Two New Acetylcholinesterases in the Pond Wolf Spider (Pardosa pseudoannulata)

نویسندگان

  • Xiangkun Meng
  • Chunrui Li
  • Chunli Xiu
  • Jianhua Zhang
  • Jingjing Li
  • Lixin Huang
  • Yixi Zhang
  • Zewen Liu
چکیده

Acetylcholinesterase (AChE), an important neurotransmitter hydrolase in both invertebrates and vertebrates, is targeted by organophosphorus and carbamate insecticides. In this study, two new AChEs were identified in the pond wolf spider Pardosa pseudoannulata, an important predatory natural enemy of several insect pests. In total, four AChEs were found in P. pseudoannulata (including two AChEs previously identified in our laboratory). The new putative AChEs PpAChE3 and PpAChE4 contain most of the common features of the AChE family, including cysteine residues, choline binding sites, the conserved sequence 'FGESAG' and conserved aromatic residues but with a catalytic triad of 'SDH' rather than 'SEH'. Recombinant enzymes expressed in Sf9 cells showed significant differences in biochemical properties compared to other AChEs, such as the optimal pH, substrate specificity, and catalytic efficiency. Among three test substrates, PpAChE1, PpAChE3 and PpAChE4 showed the highest catalytic efficiency (Vmax/KM) for ATC (acetylthiocholine iodide), with PpAChE3 exhibiting a clear preference for ATC based on the VmaxATC/VmaxBTC ratio. In addition, the four PpAChEs were more sensitive to the AChE-specific inhibitor BW284C51, which acts against ATC hydrolysis, than to the BChE-specific inhibitor ISO-OMPA, which acts against BTC hydrolysis, with at least a 8.5-fold difference in IC50 values for each PpAChE. PpAChE3, PpAChE4, and PpAChE1 were more sensitive than PpAChE2 to the tested Carb insecticides, and PpAChE3 was more sensitive than the other three AChEs to the tested OP insecticides. Based on all the results, two new functional AChEs were identified from P. pseudoannulata. The differences in AChE sequence between this spider and insects enrich our knowledge of invertebrate AChE diversity, and our findings will be helpful for understanding the selectivity of insecticides between insects and natural enemy spiders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata

The pond wolf spider Pardosa pseudoannulata, an important natural predatory enemy of rice planthoppers, is found widely distributed in paddy fields. However, data on the genes involved in insecticide action, detoxification, and response are very limited for P. pseudoannulata, which inhibits the development and appropriate use of selective insecticides to control insect pests on rice. We used tr...

متن کامل

Characterization of the Fifth Putative Acetylcholinesterase in the Wolf Spider, Pardosa pseudoannulata.

Background: Acetylcholinesterase (AChE) is an important neurotransmitter hydrolase in invertebrate and vertebrate nervous systems. The number of AChEs is various among invertebrate species, with different functions including the 'classical' role in terminating synaptic transmission and other 'non-classical' roles. Methods: Using rapid amplification of cDNA ends (RACE) technology, a new putative...

متن کامل

Transcriptome response to temperature stress in the wolf spider Pardosa pseudoannulata (Araneae: Lycosidae)

The wolf spider Pardosa pseudoannulata is a dominant predator in paddy ecosystem and an important biological control agent of rice pests. Temperature represents a primary factor influencing its biology and behavior, although the underlying molecular mechanisms remain unknown. To understand the response of P. pseudoannulata to temperature stress, we performed comparative transcriptome analyses o...

متن کامل

Transcriptomic response of wolf spider, Pardosa pseudoannulata, to transgenic rice expressing Bacillus thuringiensis Cry1Ab protein

BACKGROUND Bacillum thuringiensis (Bt) toxin produced in Cry1-expressing genetically modified rice (Bt rice) is highly effective to control lepidopteran pests, which reduces the needs for synthetic insecticides. Non-target organisms can be exposed to Bt toxins through direct feeding or trophic interactions in the field. The wolf spider Pardosa pseudoannulata, one of the dominant predators in So...

متن کامل

Transcriptome Profiling Analysis of Wolf Spider Pardosa pseudoannulata (Araneae: Lycosidae) after Cadmium Exposure

Pardosa pseudoannulata is one of the most common wandering spiders in agricultural fields and a potentially good bioindicator for heavy metal contamination. However, little is known about the mechanisms by which spiders respond to heavy metals at the molecular level. In the present study, high-throughput transcriptome sequencing was employed to characterize the de novo transcriptome of the spid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016