Prediction of the elastic strain limit of tendons.

نویسندگان

  • A M Reyes
  • H Jahr
  • H T M van Schie
  • H Weinans
  • A A Zadpoor
چکیده

The elastic strain limit (ESL) of tendons is the point where maximum elastic modulus is reached, after which micro-damage starts. Study of damage progression in tendons under repetitive (fatigue) loading requires a priori knowledge about ESL. In this study, we propose three different approaches for predicting ESL. First, one single value is assumed to represent the ESL of all tendon specimens. Second, different extrapolation curves are used for extrapolating the initial part of the stress-strain curve. Third, a method based on comparing the shape of the initial part of the stress-strain curve of specimens with a database of stress-strain curves is used. A large number of porcine tendon explants (97) were tested to examine the above-mentioned approaches. The variants of the third approach yielded significantly (p<0.05) smaller error values as compared to the other approaches. The mean absolute percentage error of the best-performing variant of the shape-based comparison was between 8.14±6.44% and 9.96±9.99% depending on the size of the initial part of the stress-strain curves. Interspecies generalizability of the best performing method was also studied by applying it for prediction of the ESL of horse tendons. The ESL of horse tendons was predicted with mean absolute percentage errors ranging between 10.53±7.6% and 19.16±14.31% depending on the size of the initial part of the stress-strain curves and the type of normalization. The results of this study suggest that both ESL and the shape of stress-strain curves may be highly different between different individuals and different anatomical locations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscoelastic properties of cat tendon: effects of time after death and preservation by freezing.

In this study postmortem changes in the character of the stress-strain limit cycle were analyzed for cat extensor communis and extensor lateralis tendons maintained in a stream of Ringer’s solution and loaded with a short series of symmetrical triangular-wave stress cycles. The mechanical behavior of these tendons was compared with that of similar tendons which had been preserved by freezing. I...

متن کامل

FINITE ELEMENT PREDICTION OF DUCTILE FRACTURE IN AUTOMOTIVE PANEL FORMING: COMPARISON BETWEEN FLD AND LEMAITRE DAMAGE MODELS

In sheet metal forming processes with complex strain paths, a part is subjected to large plastic deformation. This severe plastic deformation leads to high plastic strain localization zones and subsequent accumulation of those strains. Then internal and superficial micro-defects and in other words ductile damage is created. This damage causes quality problems such as fracture. Therefore, design...

متن کامل

A simple and efficient plasticity-fracture constitutive model for confined concrete

A plasticity-fracture constitutive model is presented for prediction of the behavior of confined plain concrete. A three-parameter yield surface is used to define the elastic limit. Volumetric plastic strain is defined as hardening parameter, which together with a nonlinear plastic potential forms a non-associated flow rule. The use of non-associated flow rule improves the prediction of the dil...

متن کامل

An in Vitro Explant Model of Overuse Tendinopathy. the Effects of Cyclic Loading and Inflammatory Mediators on Mechanical and Compositional Properties of Tendons

AADITYA DEVKOTA: An In Vitro Explant Model Of Overuse Tendinopathy. The Effects of Cyclic Loading And Inflammatory Mediators On Mechanical And Compositional Properties of Tendon. (Under the direction of Paul Weinhold) Overuse injuries are common clinical problems, athletically and occupationally, with estimates that nearly 50% of all injuries are overuse. Though a major clinical issue, the unde...

متن کامل

Tendon material properties vary and are interdependent among turkey hindlimb muscles.

The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the mechanical behavior of biomedical materials

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2014