Solution structure of toxin b, a long neurotoxin from the venom of the king cobra (Ophiophagus hannah).

نویسندگان

  • S S Peng
  • T K Kumar
  • G Jayaraman
  • C C Chang
  • C Yu
چکیده

The solution structure of toxin b, a long neurotoxin (73 amino acids and 5 disulfides) from the venom of Ophiophagus hannah (king cobra), has been determined using 1H NMR and dynamical simulated annealing techniques. The structures were calculated using 485 distance constraints and 52 dihedral angle restraints. The 21 structures that were obtained satisfy the experimental restraints and possess good nonbonded contacts. Analysis of the converged structures revealed that the protein consists of a core region from which three finger-like loops extend outwards. The regular secondary structure in toxin b includes a double and a triple stranded antiparallel beta sheet. Comparison with the solution structures of other long neurotoxins reveals that although the structure of toxin b is similar to those of previously reported long neurotoxins, clear local structural differences are observed in regions proposed to be involved in binding to the acetylcholine receptor. A positively charged cluster is found in the C-terminal tail, in Loop III, and in the tip of Loop II. This cationic cluster could be crucial for the binding of the long neurotoxins to the acetylcholine receptor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A lethal neurotoxic protein from Indian king cobra (Ophiophagus hannah) venom.

A lethal neurotoxin protein (Toxin CM36) was isolated and purified from the Indian King Cobra (Ophiophagus hannah) venom by CM-Sephadex ion exchange chromatography and HPLC. The purified toxin had a SDS-molecular weight of 15 +/- 0.5 kD. The UV absorption spectra of Toxin CM36 showed a peak at 280 nm and an Emax at 343.8 nm, when excited at 280 nm fluorescence. Toxin CM36 had an LD50 of 3.5 mic...

متن کامل

Structural and functional characterization of a novel homodimeric three-finger neurotoxin from the venom of Ophiophagus hannah (king cobra).

Snake venoms are a mixture of pharmacologically active proteins and polypeptides that have led to the development of molecular probes and therapeutic agents. Here, we describe the structural and functional characterization of a novel neurotoxin, haditoxin, from the venom of Ophiophagus hannah (King cobra). Haditoxin exhibited novel pharmacology with antagonism toward muscle (alphabetagammadelta...

متن کامل

Ophiophagus hannah Venom: Proteome, Components Bound by Naja kaouthia Antivenin and Neutralization by N. kaouthia Neurotoxin-Specific Human ScFv

Venomous snakebites are an important health problem in tropical and subtropical countries. King cobra (Ophiophagus hannah) is the largest venomous snake found in South and Southeast Asia. In this study, the O. hannah venom proteome and the venom components cross-reactive to N. kaouthia monospecific antivenin were studied. O. hannah venom consisted of 14 different protein families, including thr...

متن کامل

Novel genes encoding six kinds of three-finger toxins in Ophiophagus hannah (king cobra) and function characterization of two recombinant long-chain neurotoxins.

Three-finger toxins are a family of low-molecular-mass toxins (<10 kDa) having very similar three-dimensional structures. In the present study, 19 novel cDNAs coding three-finger toxins were cloned from the venom gland of Ophiophagus hannah (king cobra). Alignment analysis showed that the putative peptides could be divided into six kinds of three-finger toxins: LNTXs (long-chain neurotoxins), s...

متن کامل

Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches

In Southeast Asia, envenoming resulting from cobra snakebites is an important public health issue in many regions, and antivenom therapy is the standard treatment for the snakebite. Because these cobras share a close evolutionary history, the amino acid sequences of major venom components in different snakes are very similar. Therefore, either monovalent or polyvalent antivenoms may offer paras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 12  شماره 

صفحات  -

تاریخ انتشار 1997