Local Hardness Variation of Ti50Cu32Ni15Sn3 Processed by Laser Beam Melting (LBM)

نویسندگان

  • Michael Cornelius Hermann Karg
  • Bhrigu Ahuja
  • Oliver Hentschel
  • Michael Schmidt
چکیده

Amorphous metals which are synonymously called metallic glasses form a rather young group of engineering materials. Compared to crystalline metals they offer unique combinations of properties: tensile strength, hardness, elastic strain, resistance against corrosion and abrasive wear are rather high. In order to minimize crystal growth, rapid solidification from the liquid phase is required. High cooling rates are a characteristic property of the additive manufacturing technology Laser Beam Melting in Powder Bed (LBM). This paper shows first results of processing Ti50Cu32Ni15Sn3 by LBM. Unlike many other alloys with high glass forming ability, it does not contain costly rare earth elements. No literature is known to the authors about LBM of this material. Because relative density close to 100 % is a prerequisite for producing parts with high mechanical performance, a parameter study was conducted varying scan speed, hatch distance and laser power in wide ranges. The obtained samples are characterized by metallographic sections, hardness measurements and X-ray diffraction. Apart from reaching high relative densities, a wide variation in Vickers hardness over the length of samples was found. It corresponds to the locally different thermodynamic conditions. Apart from introducing a new material with promising properties to the manufacturing technology of LBM, this might open up a new approach to modify mechanical material properties in a single work piece made from uniform powder by adapting LBM process parameters. Both the range of applications for LBM as well as the range of geometries producible from amorphous metals might be expanded.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting

This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23) specimens fabricated by a laser beam melting (LBM) and an electron beam melting (EBM) system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-...

متن کامل

Processability of high strength Aluminium-Copper alloys AW-2022 and 2024 by Laser Beam Melting in Powder Bed

Additive Manufacturing offers geometric freedom excellently suited for topology optimized light weight designs. Ideally these should be produced from materials of high strength to weight ratio such as aluminium-copper alloys. Yet these are considered unsuitable for welding. With Laser Beam Melting of Metals in powder bed (LBM), the only class of aluminium alloys widely processed is that of alum...

متن کامل

Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting

Synthetic materials for bone replacement must ensure a sufficient mechanical stability and an adequate cell proliferation within the structures. Hereby, titanium materials are suitable for producing patient-individual porous bone scaffolds by using generative techniques. In this in vitro study, the viability of human osteoblasts was investigated in porous 3D Ti6Al4V scaffolds, which were produc...

متن کامل

Cavitation erosion of laser processed Fe-Cr-Mn and Fe-Cr-Co alloys

Purpose: Purpose of this paper is attempt explanation how laser beam processing influence on the cavitation performance of the Fe-Cr-Mn and Fe-Cr-Co alloys. This kind of alloys are frequently used in Polish power plants to routine repairs of damaged blades working under cavitation loading. Design/methodology/approach: Padding welds of investigated alloys were tested for three cases: after laser...

متن کامل

The effect of surface roughness on 1050 aluminum alloy weld profile welded by pulsed Nd:YAG laser

Surface roughness in the welding processes is one of the important parameters in the laser welded metal connections which affects laser beam absorption directly. When the laser beam is irradiated to the surface of the base metal, the surface roughness plays an important role in the amount of beam absorption and the amount of melting achieved and directly affects the penetration depth. The main ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • iJES

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015