The clique number and the smallest Q-eigenvalue of graphs

نویسندگان

  • Leonardo Silva de Lima
  • Vladimir Nikiforov
  • Carla Silva Oliveira
چکیده

Let qmin(G) stand for the smallest eigenvalue of the signless Laplacian of a graph G of order n: This paper gives some results on the following extremal problem: How large can qmin (G) be if G is a graph of order n; with no complete subgraph of order r + 1? It is shown that this problem is related to the well-known topic of making graphs bipartite. Using known classical results, several bounds on qmin are obtained, thus extending previous work of Brandt for regular graphs. In addition, using graph blowups, a general asymptotic result about the maximum qmin is established. As a supporting tool, the spectra of the Laplacian and the signless Laplacian of blowups of graphs are calculated. Keywords: blow-up graphs; Laplacian; signless Laplacian; complete subgraphs; extremal problem, clique number. AMS classi…cation: 05C50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection graphs associated with semigroup acts

The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...

متن کامل

Ela Maxima of the Q-index: Graphs with Bounded Clique Number∗

This paper gives a tight upper bound on the spectral radius of the signless Laplacian of graphs of given order and clique number. More precisely, let G be a graph of order n, let A be its adjacency matrix, and let D be the diagonal matrix of the row-sums of A. If G has clique number ω, then the largest eigenvalue q (G) of the matrix Q = A+D satisfies q (G) ≤ 2 (1− 1/ω)n. If G is a complete regu...

متن کامل

The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters

We prove a conjecture by Van Dam & Sotirov on the smallest eigenvalue of (distance-j) Hamming graphs and a conjecture by Karloff on the smallest eigenvalue of (distance-j) Johnson graphs. More generally, we study the smallest eigenvalue and the second largest eigenvalue in absolute value of the graphs of the relations of classical P and Q-polynomial association schemes.

متن کامل

Walks and the spectral radius of graphs

Given a graph G, write μ (G) for the largest eigenvalue of its adjacency matrix, ω (G) for its clique number, and wk (G) for the number of its k-walks. We prove that the inequalities wq+r (G) wq (G) ≤ μ (G) ≤ ω (G) − 1 ω (G) wr (G) hold for all r > 0 and odd q > 0. We also generalize a number of other bounds on μ (G) and characterize pseudo-regular and pseudo-semiregular graphs in spectral terms.

متن کامل

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 339  شماره 

صفحات  -

تاریخ انتشار 2016