Kernel-Based Robust Tracking for Objects Undergoing Occlusion

نویسندگان

  • R. Venkatesh Babu
  • Patrick Pérez
  • Patrick Bouthemy
چکیده

Visual tracking has been a challenging problem in computer vision over the decades. The applications of Visual Tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Occlusion is one of the major challenges that needs to be handled in tracking. In this work, we propose a new method to track objects undergoing occlusion using both sum-of-squared differences (SSD) and color-based mean-shift (MS) trackers which complement each other by overcoming their respective disadvantages. The rapid model change in SSD tracker is overcome by the MS tracker module, while the inability of MS tracker to handle large displacements is circumvented by the SSD module. Mean-shift tracker, which gained more attention recently, is known for tracking objects in a cluttered environment. Since the MS tracker relies on the global object parameters such as color, the performance of the tracker degrades when the object undergoes partial occlusion. To avoid the adverse effect of this global model, we use the MS tracker so as to track the local object properties instead of a global one. Further a likelihood ratio weighting is used for SSD tracker to avoid drift during partial occlusion and to update the MS tracking modules. The proposed tracker outperforms the traditional MS tracker, as illustrated in the instances applied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

Tracking moving video objects using mean-shift algorithm

The implementation of the kernel-based tracking of moving video objects [1], [2] based on the mean shift algorithm [4] is presented. We show that the algorithm performs exceptionally well on moving objects in various video sequences and that it is robust to changes in shape as well as almost complete occlusion. We also propose possible extensions of the current implementation and future work th...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Robust tracking with motion estimation and local Kernel - based color modeling q

Visual tracking has been a challenging problem in computer vision over the decades. The applications of visual tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift tracker, which gained attention recently, is known for tracking objects in a cluttered environment. In this work, we propose a new method to track objects by combining two well-known trackers...

متن کامل

Tracking of Facial Regions Using Active Shape Models and Adaptive Skin Color Modeling

It is widely accepted that skin-color is an effective and robust cue for face detection, localization and visual tracking. Well-known methods of color modeling, such as histograms and Gaussian mixture models enable creation of appropriately exact and fast detectors of skin. In particular, skin color-based methods are robust to changes in scale, resolution and partial occlusion. In real scenario...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006