Formalization of Error-Correcting Codes: From Hamming to Modern Coding Theory

نویسندگان

  • Reynald Affeldt
  • Jacques Garrigue
چکیده

By adding redundancy to transmitted data, error-correcting codes (ECCs) make it possible to communicate reliably over noisy channels. Minimizing redundancy and (de)coding time has driven much research, culminating with LowDensity Parity-Check (LDPC) codes. At first sight, ECCs may be considered as a trustful piece of computer systems because classical results are well-understood. But ECCs are also performance-critical so that new hardware calls for new implementations whose testing is always an issue. Moreover, research about ECCs is still flourishing with papers of ever-growing complexity. In order to provide means for implementers to perform verification and for researchers to firmly assess recent advances, we have been developing a formalization of ECCs using the SSReflect extension of the Coq proof-assistant. We report on the formalization of linear ECCs, duly illustrated with a theory about the celebrated Hamming codes and the verification of the sum-product algorithm for decoding LDPC codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying, Improving and Analyzing Some Heuristics for Binary Codes in Combinatorial DNA Design

Combinatorial algorithms have long been used to design error correcting codes with various constraints such as Hamming distance or weight. Such algorithms have been used to design DNA codes, which parallel error correcting codes in many ways. We implemented two algorithms from coding theory and adapted them for DNA. We tried several improvements and combinations and we will discuss the empirica...

متن کامل

Algorithmic Issues in Coding Theory

The goal of this article is to provide a gentle introduction to the basic definitions, goals and constructions in coding theory. In particular we focus on the algorithmic tasks tackled by the theory. We describe some of the classical algebraic constructions of error-correcting codes including the Hamming code, the Hadamard code and the Reed Solomon code. We describe simple proofs of their error...

متن کامل

Spatially correlated qubit errors and burst-correcting quantum codes

We explore the design of quantum error-correcting codes for cases where the decoherence events of qubits are correlated. In particular, we consider the case where only spatially contiguous qubits decohere, which is analogous to the case of burst errors in classical coding theory. We present several different efficient schemes for constructing families of such codes. For example, we construct a ...

متن کامل

Error Correcting Codes Mt361/mt461/mt5461

These notes are intended to give the logical structure of the course; proofs and further remarks will be given in lectures. Further installments will be issued as they are ready. All handouts and problem sheets will be put on Moodle. I would very much appreciate being told of any corrections or possible improvements to these notes. You are warmly encouraged to ask questions in lectures, and to ...

متن کامل

Upper Bounds on the Size of Quantum Codes

This paper is concerned with bounds for quantum error-correcting codes. Using the quantum MacWilliams identities, we generalize the linear programming approach from classical coding theory to the quantum case. Using this approach, we obtain Singleton-type, Hamming-type, and the first linearprogramming-type bounds for quantum codes. Using the special structure of linear quantum codes, we derive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015