Cross-Composition: A New Technique for Kernelization Lower Bounds
نویسندگان
چکیده
We introduce a new technique for proving kernelization lower bounds, called cross-composition. A classical problem L cross-composes into a parameterized problem Q if an instance of Q with polynomially bounded parameter value can express the logical OR of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam (STOC 2008) we show that if an NP-hard problem cross-composes into a parameterized problem Q then Q does not admit a polynomial kernel unless the polynomial hierarchy collapses. Our technique generalizes and strengthens the recent techniques of using or-composition algorithms and of transferring the lower bounds via polynomial parameter transformations. We show its applicability by proving kernelization lower bounds for a number of important graphs problems with structural (non-standard) parameterizations, e.g., Chromatic Number, Clique, and Weighted Feedback Vertex Set do not admit polynomial kernels with respect to the vertex cover number of the input graphs unless the polynomial hierarchy collapses, contrasting the fact that these problems are trivially fixed-parameter tractable for this parameter. We have similar lower bounds for Feedback Vertex Set. 1998 ACM Subject Classification F.2.2
منابع مشابه
Kernelization Lower Bounds By Cross-Composition
We introduce the cross-composition framework for proving kernelization lower bounds. A classical problem L and/or-cross-composes into a parameterized problem Q if it is possible to efficiently construct an instance of Q with polynomially bounded parameter value that expresses the logical and or or of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a re...
متن کاملFractals for Kernelization Lower Bounds, With an Application to Length-Bounded Cut Problems
Bodlaender et al.’s [SIDMA 2014] cross-composition technique is a popular method for excluding polynomial-size problem kernels for NP-hard parameterized problems. We present a new technique exploiting triangle-based fractal structures for extending the range of applicability of cross-compositions. Our technique makes it possible to prove new no-polynomial-kernel results for a number of problems...
متن کاملWeak compositions and their applications to polynomial lower bounds for kernelization
We introduce a new form of composition called weak composition that allows us to obtain polynomial kernelization lower-bounds for several natural parameterized problems. Let d ≥ 2 be some constant and let L1, L2 ⊆ {0, 1}∗ × N be two parameterized problems where the unparameterized version of L1 is NP-hard. Assuming coNP 6⊆ NP/poly, our framework essentially states that composing t L1-instances ...
متن کاملKernel Bounds for Path and Cycle Problems
Connectivity problems like k-Path and k-Disjoint Paths relate to many important milestones in parameterized complexity, namely the Graph Minors Project, color coding, and the recent development of techniques for obtaining kernelization lower bounds. This work explores the existence of polynomial kernels for various path and cycle problems, by considering nonstandard parameterizations. We show p...
متن کاملKernel Bounds for Structural Parameterizations of Pathwidth
Assuming the AND-distillation conjecture, the Pathwidth problem of determining whether a given graphG has pathwidth at most k admits no polynomial kernelization with respect to k. The present work studies the existence of polynomial kernels for Pathwidth with respect to other, structural, parameters. Our main result is that, unless NP ⊆ coNP/poly, Pathwidth admits no polynomial kernelization ev...
متن کامل