The Caenorhabditis elegans orthologue of the human gene responsible for spinal muscular atrophy is a maternal product critical for germline maturation and embryonic viability.
نویسندگان
چکیده
Spinal muscular atrophy (SMA) is a common disorder characterized by loss of lower motor neurones of the spinal cord. The disease is caused by mutations in the survival motor neurone ( SMN ) gene. SMN is ubiquitously expressed and evolutionarily conserved, and its role in RNA processing has been well established. However, these properties do not explain the observed specificity of motor neurone death. To gain further insight into the function of SMN, we have isolated and characterized the Caenorhabditis elegans orthologue of the SMN gene ( CeSMN ). Here we show that CeSMN is transmitted maternally as a predominantly nuclear factor, which remains present in all the blastomeres throughout embryonic development and onwards into adulthood. In adult nematodes, a CeSMN-green fluorescent protein fusion protein is expressed in a number of cell types including the germline. Both disruption of the endogenous CeSMN function and overexpression of the gene result in a severe decrease in the number of progeny and in locomotive defects. In addition, its transient knockdown leads to sterility caused by a defect in germ cell maturation. The expression pattern and functional properties so far observed for CeSMN, together with its unusual behaviour in the germline, indicate that SMN may be involved in specific gene expression events at these very early developmental stages. We have also identified a deletion in the CeSMN promoter region in egl-32. This mutant may become a useful genetic tool with which to explore regulation of CeSMN and hence provide possible clues for novel therapeutic strategies for SMA.
منابع مشابه
Deletion of smn-1, the Caenorhabditis elegans ortholog of the spinal muscular atrophy gene, results in locomotor dysfunction and reduced lifespan
Spinal muscular atrophy is the most common genetic cause of infant mortality and is characterized by degeneration of lower motor neurons leading to muscle wasting. The causative gene has been identified as survival motor neuron (SMN). The invertebrate model organism Caenorhabditis elegans contains smn-1, the ortholog of human SMN. Caenorhabditis elegans smn-1 is expressed in various tissues inc...
متن کاملCharacterization of the Schizosaccharomyces pombe orthologue of the human survival motor neuron (SMN) protein.
Childhood onset spinal muscular atrophy (SMA) is a common autosomal recessive disorder primarily characterized by the loss of lower alpha motor neurons. The underlying chromosomal defects causing SMA have been found in the survival motor neuron (SMN) gene. SMN has been shown previously to play a role in both snRNP biogenesis and mRNA processing, although direct evidence for the relationship bet...
متن کاملSpinal Muscular Atrophy: A Short Review Article
Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...
متن کاملMES-2, a maternal protein essential for viability of the germline in Caenorhabditis elegans, is homologous to a Drosophila Polycomb group protein.
A unique and essential feature of germ cells is their immortality. In Caenorhabditis elegans, germline immortality requires the maternal contribution from four genes, mes-2, mes-3, mes-4 and mes-6. We report here that mes-2 encodes a protein similar to the Drosophila Polycomb group protein, Enhancer of zeste, and in the accompanying paper that mes-6 encodes another Polycomb group protein. The P...
متن کاملO-27: Preimplantation Genetic Diagnosis in Prevention of Genetic Diseases -Diagnostic of Spinal Muscular Atrophy (SMA)
Background: Preimplantation genetic diagnosis - PGD is currently an established procedure allowing genetic research of oocyte or embryo before implantation to the uterus. Spinal muscular atrophy (SMA) is a neurodegenerative disorder, being the second most common lethal autosomal recessive disease in Caucasians, after cystic fibrosis. There are three clinically different types of which type I (W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 8 12 شماره
صفحات -
تاریخ انتشار 1999