Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons.

نویسندگان

  • J K Douglass
  • N J Strausfeld
چکیده

Giant motion-sensitive tangential neurons in the lobula plate are thought to be cardinal elements in the oculomotor pathways of flies. However, these large neurons do not themselves compute motion, and elementary motion detectors have been proposed only from theory. Here we identify the forms, projections, and responses of small-field retinotopic neurons that comprise a well known pathway from the retina to the lobula plate. Already at the level of the second and third synapses beneath the photoreceptor layer, certain of these small elements show responses that distinguish motion from flicker. At a level equivalent to the vertebrate inner plexiform layer (the fly's outer medulla) at least one retinotopic element is directionally selective. At the inner medulla, small retinotopic neurons with bushy dendrites extending through a few neighboring columns leave the inner medulla and supply inputs onto lobula plate tangentials. These medulla relays have directionally selective responses that are indistinguishable from those of large-field tangentials except for their amplitude and modulation with contrast frequency. Centrifugal neurons leading back from the inner medulla out to the lamina also show orientation-selective responses to motion. The results suggest that specific cell types between the lamina and inner medulla correspond to stages of the Hassenstein-Reichardt correlation model of motion detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual motion-detection circuits in flies: small-field retinotopic elements responding to motion are evolutionarily conserved across taxa.

The Hassenstein-Reichardt autocorrelation model for motion computation was derived originally from studies of optomotor turning reactions of beetles and further refined from studies of houseflies. Its applicaton for explaining a variety of optokinetic behaviors in other insects assumes that neural correlates to the model are principally similar across taxa. This account examines whether this as...

متن کامل

Visual motion-detection circuits in flies: parallel direction- and non-direction-sensitive pathways between the medulla and lobula plate.

The neural circuitry of motion processing in insects, as in primates, involves the segregation of different types of visual information into parallel retinotopic pathways that subsequently are reunited at higher levels. In insects, achromatic, motion-sensitive pathways to the lobula plate are separated from color-processing pathways to the lobula. Further parallel subdivisions of the retinotopi...

متن کامل

The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects.

Based on comparative anatomical studies and electrophysiological experiments, we have identified a conserved subset of neurons in the lamina, medulla, and lobula of dipterous insects that are involved in retinotopic visual motion direction selectivity. Working from the photoreceptors inward, this neuronal subset includes lamina amacrine (alpha) cells, lamina monopolar (L2) cells, the basket T-c...

متن کامل

Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies.

Anatomical methods have identified conserved neuronal morphologies and synaptic relationships among small-field retinotopic neurons in insect optic lobes. These conserved cell shapes occur across many species of dipteran insects and are also shared by Lepidoptera and Hymenoptera. The suggestion that such conserved neurons should participate in motion computing circuits finds support from intrac...

متن کامل

Retinotopic Organization of Small-Field-Target-Detecting Neurons in the Insect Visual System

BACKGROUND Despite having tiny brains and relatively low-resolution compound eyes, many fly species frequently engage in precisely controlled aerobatic pursuits of conspecifics. Recent investigations into high-order processing in the fly visual system have revealed a class of neurons, coined small-target-motion detectors (STMDs), capable of responding robustly to target motion against the motio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 1995