Calculations suggest a pathway for the transverse diffusion of a hydrophobic peptide across a lipid bilayer.

نویسندگان

  • A Kessel
  • K Schulten
  • N Ben-Tal
چکیده

Alamethicin is a hydrophobic antibiotic peptide 20 amino acids in length. It is predominantly helical and partitions into lipid bilayers mostly in transmembrane orientations. The rate of the peptide transverse diffusion (flip-flop) in palmitoyl-oleyl-phosphatidylcholine vesicles has been measured recently and the results suggest that it involves an energy barrier, presumably due to the free energy of transfer of the peptide termini across the bilayer. We used continuum-solvent model calculations, the known x-ray crystal structure of alamethicin and a simplified representation of the lipid bilayer as a slab of low dielectric constant to calculate the flip-flop rate. We assumed that the lipids adjust rapidly to each configuration of alamethicin in the bilayer because their motions are significantly faster than the average peptide flip-flop time. Thus, we considered the process as a sequence of discrete peptide-membrane configurations, representing critical steps in the diffusion, and estimated the transmembrane flip-flop rate from the calculated free energy of the system in each configuration. Our calculations indicate that the simplest possible pathway, i.e., the rotation of the helix around the bilayer midplane, involving the simultaneous burial of the two termini in the membrane, is energetically unfavorable. The most plausible alternative is a two-step process, comprised of a rotation of alamethicin around its C-terminus residue from the initial transmembrane orientation to a surface orientation, followed by a rotation around the N-terminus residue from the surface to the final reversed transmembrane orientation. This process involves the burial of one terminus at a time and is much more likely than the rotation of the helix around the bilayer midplane. Our calculations give flip-flop rates of approximately 10(-7)/s for this pathway, in accord with the measured value of 1.7 x 10(-6)/s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free diffusion of steroid hormones across biomembranes: a simplex search with implicit solvent model calculations.

Steroid hormones such as progesterone, testosterone, and estradiol are derived from cholesterol, a major constituent of biomembranes. Although the hormones might be expected to associate with the bilayer in a fashion similar to that of cholesterol, their biological action in regulating transcription of target genes involves transbilayer transfer by free diffusion, which is not observed for chol...

متن کامل

Integration of a K+ channel-associated peptide in a lipid bilayer: conformation, lipid-protein interactions, and rotational diffusion.

The 26-residue peptide of sequence KEALYILMVLGFFGFFTLGIMLSYIR, which contains the single putative transmembrane domain of a small protein that is associated with slow voltage-gated K+ channels, has been incorporated in bilayers of dimyristoylphosphatidylcholine by dialysis from 2-chloroethanol to form complexes of homogeneous lipid/peptide ratio. Fourier transform infrared spectroscopy indicate...

متن کامل

Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch.

A novel mechanism for membrane modulation of transmembrane protein structure, and consequently function, is suggested in which mismatch between the hydrophobic surface of the protein and the hydrophobic interior of the lipid bilayer induces a flexing or bending of a transmembrane segment of the protein. Studies on model hydrophobic transmembrane peptides predict that helices tilt to submerge th...

متن کامل

Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations.

Alamethicin is an amphipathic alpha-helical peptide that forms ion channels. An early event in channel formation is believed to be the binding of alamethicin to the surface of a lipid bilayer. Molecular dynamics simulations are used to compare the structural and dynamic properties of alamethicin in water and alamethicin bound to the surface of a phosphatidylcholine bilayer. The bilayer surface ...

متن کامل

Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions.

Membrane model systems consisting of phosphatidylcholines and hydrophobic alpha-helical peptides with tryptophan flanking residues, a characteristic motif for transmembrane protein segments, were used to investigate the contribution of tryptophans to peptide-lipid interactions. Peptides of different lengths and with the flanking tryptophans at different positions in the sequence were incorporat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 79 5  شماره 

صفحات  -

تاریخ انتشار 2000