Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy Minimization
نویسندگان
چکیده
We investigate the First-Order Primal-Dual (FPD) algorithm of Chambolle and Pock [1] in connection with MAP inference for general discrete graphical models. We provide a tight analytical upper bound of the stepsize parameter as a function of the underlying graphical structure (number of states, graph connectivity) and thus insight into the dependency of the convergence rate on the problem structure. Furthermore, we provide a method to compute efficiently primal and dual feasible solutions as part of the FPD iteration, which allows to obtain a sound termination criterion based on the primal-dual gap. An experimental comparison with Nesterov’s first-order method in connection with dual decomposition shows superiority of the latter one in optimizing the dual problem. However due to the direct optimization of the primal bound, for small-sized (e.g. 20x20 grid graphs) problems with a large number of states, FPD iterations lead to faster improvement of the primal bound and a resulting faster overall convergence.
منابع مشابه
Exploiting Strong Convexity from Data with Primal-Dual First-Order Algorithms
We consider empirical risk minimization of linear predictors with convex loss functions. Such problems can be reformulated as convex-concave saddle point problems, and thus are well suitable for primal-dual first-order algorithms. However, primal-dual algorithms often require explicit strongly convex regularization in order to obtain fast linear convergence, and the required dual proximal mappi...
متن کاملTighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm
We propose an efficient and adaptive method for MAP-MRF inference that provides increasingly tighter upper and lower bounds on the optimal objective. Similar to Sontag et al. (2008b), our method starts by solving the first-order LOCAL(G) linear programming relaxation. This is followed by an adaptive tightening of the relaxation where we incrementally add higher-order interactions to enforce pro...
متن کاملPrimal-dual Algorithm for Convex Markov Random Fields
Computing maximum a posteriori configuration in a first-order Markov Random Field has become a routinely used approach in computer vision. It is equivalent to minimizing an energy function of discrete variables. In this paper we consider a subclass of minimization problems in which unary and pairwise terms of the energy function are convex. Such problems arise in many vision applications includ...
متن کاملEfficient MRF Energy Minimization via Adaptive Diminishing Smoothing
We consider the linear programming relaxation of an energy minimization problem for Markov Random Fields. The dual objective of this problem can be treated as a concave and unconstrained, but non-smooth function. The idea of smoothing the objective prior to optimization was recently proposed in a series of papers. Some of them suggested the idea to decrease the amount of smoothing (so called te...
متن کاملCanonical Primal-Dual Method for Solving Non-convex Minimization Problems
A new primal-dual algorithm is presented for solving a class of non-convex minimization problems. This algorithm is based on canonical duality theory such that the original non-convex minimization problem is first reformulated as a convex-concave saddle point optimization problem, which is then solved by a quadratically perturbed primal-dual method. Numerical examples are illustrated. Comparing...
متن کامل