The Pedemis: a Portable Electromagnetic Induction Sensor with Integrated Positioning

نویسندگان

  • Benjamin E. Barrowes
  • Fridon Shubitidze
  • Tomasz M. Grzegorczyk
  • Pablo Fernandez
  • Kevin O'Neill
چکیده

Pedemis (PortablE Decoupled Electromagnetic Induction Sensor) is a time-domain handheld electromagnetic induction (EMI) instrument with the intended purpose of improving the detection and classification of UneXploded Ordnance (UXO). Pedemis sports nine coplanar transmitters (the Tx assembly) and nine triaxial receivers held in a fixed geometry with respect to each other (the Rx assembly) but with that Rx assembly physically decoupled from the Tx assembly allowing flexible data acquisition modes and deployment options. The data acquisition (DAQ) electronics consists of the National Instruments (NI) cRIO platform which is much lighter and more energy efficient that prior DAQ platforms. Pedemis has successfully acquired initial data, and inversion of the data acquired during these initial tests has yielded satisfactory polarizabilities of a spherical target. In addition, precise positioning of the Rx assembly has been achieved via position inversion algorithms based solely on the data acquired from the receivers during the “on-time” of the primary field. Pedemis has been designed to be a flexible yet user friendly EMI instrument that can survey, detect and classify targets in a one pass solution. In this paper, the Pedemis instrument is introduced along with its operation protocols, initial data results, and current status. Conference Name: Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVII Conference Date: April 27, 2012 Pedemis (PortablE Decoupled Electromagnetic Induction Sensor) is a time-domain handheld electromagnetic induction (EMI) instrument with the intended purpose of improving the detection and classification of UneXploded Ordnance (UXO). Pedemis sports nine coplanar transmitters (the Tx assembly) and nine triaxial receivers held in a fixed geometry with respect to each other (the Rx assembly) but with that Rx assembly physically decoupled from the Tx assembly allowing flexible data acquisition modes and deployment options. The data acquisition (DAQ) electronics consists of the National Instruments (NI) cRIO platform which is much lighter and more energy efficient that prior DAQ platforms. Pedemis has successfully acquired initial data, and inversion of the data acquired during these initial tests has yielded satisfactory polarizabilities of a spherical target. In addition, precise positioning of the Rx assembly has been achieved via position inversion algorithms based solely on the data acquired from the receivers during the “on-time” of the primary field. Pedemis has been designed to be a flexible yet user friendly EMI instrument that can survey, detect and classify targets in a one pass solution. In this paper, the Pedemis instrument is introduced along with its operation protocols, initial data results, and current status. Pedemis: a Portable Electromagnetic Induction Sensor with Integrated Positioning Benjamin E. Barrowesa,b, Fridon Shubitidzeb, Tomasz M. Grzegorczykc, Pablo Fernándezb, and Kevin O’Neilla,b aUSACE-ERDC-CRREL, 72 Lyme Rd., Hanover, NH 03755, USA bThayer School of Engineering, Darthmouth College, Hanover, NH 03755, USA bDelpsi, LLC, Newton, MA 02458 ABSTRACT Pedemis (PortablE Decoupled Electromagnetic Induction Sensor) is a time-domain handheld electromagnetic induction (EMI) instrument with the intended purpose of improving the detection and classification of UneXploded Ordnance (UXO). Pedemis sports nine coplanar transmitters (the Tx assembly) and nine triaxial receivers held in a fixed geometry with respect to each other (the Rx assembly) but with that Rx assembly physically decoupled from the Tx assembly allowing flexible data acquisition modes and deployment options. The data acquisition (DAQ) electronics consists of the National Instruments (NI) cRIO platform which is much lighter and more energy efficient that prior DAQ platforms. Pedemis has successfully acquired initial data, and inversion of the data acquired during these initial tests has yielded satisfactory polarizabilities of a spherical target. In addition, precise positioning of the Rx assembly has been achieved via position inversion algorithms based solely on the data acquired from the receivers during the “on-time” of the primary field. Pedemis has been designed to be a flexible yet user friendly EMI instrument that can survey, detect and classify targets in a one pass solution. In this paper, the Pedemis instrument is introduced along with its operation protocols, initial data results, and current status.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments

Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As oppose...

متن کامل

3D Path Planning Algorithm for Mobile Anchor-Assisted Positioning in Wireless Sensor Networks

Positioning service is one of Wireless Sensor Networks’ (WSNs) fundamental services. The accurate position of the sensor nodes plays a vital role in many applications of WSNs. In this paper, a 3D positioning algorithm is being proposed, using mobile anchor node to assist sensor nodes in order to estimate their positions in a 3D geospatial environment. However, mobile anchor node’s 3D path optim...

متن کامل

An HSGPS , inertial and map - matching integrated portable vehicular navigation system for uninterrupted real - time vehicular navigation

Robust real-time vehicle positioning is a critical requirement for many in-vehicle technologies. However, no standalone positioning system is capable of providing uninterrupted and accurate vehicular navigation data in all environments that a vehicle could encounter. This paper presents a portable vehicular navigation system that combines high-sensitivity GPS, inertial sensors and map-matching ...

متن کامل

Application of Signal Processing Tools for Fault Diagnosis in Induction Motors-A Review-Part II

The use of efficient signal processing tools (SPTs) to extract proper indices for the fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two covers the signal processing techniques which can be applied to non-stationary conditions. In this paper, all utilized SPTs for n...

متن کامل

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012