Bruhat intervals as rooks on skew Ferrers boards

نویسنده

  • Jonas Sjöstrand
چکیده

We characterise the permutations π such that the elements in the closed lower Bruhat interval [id, π] of the symmetric group correspond to nontaking rook configurations on a skew Ferrers board. It turns out that these are exactly the permutations π such that [id, π] corresponds to a flag manifold defined by inclusions, studied by Gasharov and Reiner. Our characterisation connects the Poincaré polynomials (rank-generating function) of Bruhat intervals with q-rook polynomials, and we are able to compute the Poincaré polynomial of some particularly interesting intervals in the finite Weyl groups An and Bn. The expressions involve q-Stirling numbers of the second kind. As a by-product of our method, we present a new Stirling number identity connected to both Bruhat intervals and the poly-Bernoulli numbers defined by Kaneko.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rook Poset Equivalence of Ferrers Boards

A natural construction due to K. Ding yields Schubert varieties from Ferrers boards. The poset structure of the Schubert cells in these varieties is equal to the poset of maximal rook placements on the Ferrers board under the Bruhat order. We determine when two Ferrers boards have isomorphic rook posets. Equivalently, we give an exact categorization of when two Ding Schubert varieties have iden...

متن کامل

Rooks on Ferrers Boards and Matrix Integrals

Let C(n; N) = R H N tr Z 2n (dZ) denote a matrix integral by a U(N)-invariant gaussian measure on the space H N of hermitian N N matrices. The integral is known to be always a positive integer. We derive a simple combinatorial interpretation of this integral in terms of rook conngurations on Ferrers boards. The formula C(n; N) = (2n ? 1)!! n X k=0 N k + 1 n k 2 k found by J. Harer and D. Zagier...

متن کامل

Bruhat Order on Fixed-point-free Involutions in the Symmetric Group

We provide a structural description of Bruhat order on the set F2n of fixed-pointfree involutions in the symmetric group S2n which yields a combinatorial proof of a combinatorial identity that is an expansion of its rank-generating function. The decomposition is accomplished via a natural poset congruence, which yields a new interpretation and proof of a combinatorial identity that counts the n...

متن کامل

Enumerative combinatorics related to partition shapes

This thesis deals with enumerative combinatorics applied to three different objects related to partition shapes, namely tableaux, restricted words, and Bruhat intervals. The main scientific contributions are the following. Paper I: Let the sign of a standard Young tableau be the sign of the permutation you get by reading it row by row from left to right, like a book. A conjecture by Richard Sta...

متن کامل

Rook Theory and Hypergeometric Series

The number of ways of placing k non-attacking rooks on a Ferrers board is expressed as a hypergeometric series, of a type originally studied by Karlsson and Minton. Known transformation identities for series of this type translate into new theorems about rook polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2007