Understanding vasopressor intervention and weaning: risk prediction in a public heterogeneous clinical time series database
نویسندگان
چکیده
Background The widespread adoption of electronic health records allows us to ask evidence-based questions about the need for and benefits of specific clinical interventions in critical-care settings across large populations. Objective We investigated the prediction of vasopressor administration and weaning in the intensive care unit. Vasopressors are commonly used to control hypotension, and changes in timing and dosage can have a large impact on patient outcomes. Materials and Methods We considered a cohort of 15 695 intensive care unit patients without orders for reduced care who were alive 30 days post-discharge. A switching-state autoregressive model (SSAM) was trained to predict the multidimensional physiological time series of patients before, during, and after vasopressor administration. The latent states from the SSAM were used as predictors of vasopressor administration and weaning. Results The unsupervised SSAM features were able to predict patient vasopressor administration and successful patient weaning. Features derived from the SSAM achieved areas under the receiver operating curve of 0.92, 0.88, and 0.71 for predicting ungapped vasopressor administration, gapped vasopressor administration, and vasopressor weaning, respectively. We also demonstrated many cases where our model predicted weaning well in advance of a successful wean. Conclusion Models that used SSAM features increased performance on both predictive tasks. These improvements may reflect an underlying, and ultimately predictive, latent state detectable from the physiological time series.
منابع مشابه
Weaning outcome prediction from heterogeneous time series using Normalized Compression Distance and Multidimensional Scaling
In the Intensive Care Unit of a hospital (ICU), weaning can be defined as the process of gradual reduction in the level of mechanical ventilation support. A failed weaning increases the risk of death in prolonged mechanical ventilation patients. Different methods for weaning outcome prediction have been proposed using variables and time series extracted from the monitoring systems, however, mon...
متن کاملRisk prediction based on a time series case study: Tazareh coal mine
In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonali...
متن کاملClinical Intervention Prediction and Understanding using Deep Networks
Real-time prediction of clinical interventions remains a challenge within intensive care units (ICUs). This task is complicated by data sources that are noisy, sparse, heterogeneous and outcomes that are imbalanced. In this paper, we integrate data from all available ICU sources (vitals, labs, notes, demographics) and focus on learning rich representations of this data to predict onset and wean...
متن کاملClinical Intervention Prediction and Understanding with Deep Neural Networks
Real-time prediction of clinical interventions remains a challenge within intensive care units (ICUs). This task is complicated by data sources that are sparse, noisy, heterogeneous and outcomes that are imbalanced. In this work, we integrate data across many ICU sources — vitals, labs, notes, demographics — and focus on learning rich representations of this data to predict onset and weaning of...
متن کاملPredicting intervention onset in the ICU with switching state space models
The impact of many intensive care unit interventions has not been fully quantified, especially in heterogeneous patient populations. We train unsupervised switching state autoregressive models on vital signs from the public MIMIC-III database to capture patient movement between physiological states. We compare our learned states to static demographics and raw vital signs in the prediction of fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Medical Informatics Association : JAMIA
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2017