Domain Applied to a Dirichlet Problem
نویسندگان
چکیده
Here f ∈ L(Ω) , g ∈ H(∂Ω) and Ω is a bounded domain in R with the smooth boundary ∂Ω ( see Figure 1 ). The method of lines for solving Problem I works well if Ω is a rectangular domain since the finite difference solution is expressed explicitly by use of eigenvalues and eigenvectors for the finite difference scheme([BGN70], [Nak65]). But one says that this method seems difficult to be applied to the case where Ω is not a rectangular domain. However the solution algorithm using the fictitious domain and the domain decomposition has been developed recently ( [AKP95], [GPP94], [HH99], [FKK95], [KK99], [MKM86]). Hence from this point of view we shall propose a numerical algorithm by the method of lines coupled with a fictitious domain in this paper. First of all, we embed Ω in a rectangular domain Π whose boundary ∂Π consists of straight lines parallel to axes and set Ω1 = Π \ (Ω ∪ ∂Ω) ( see Figure 2 ). Then Π is called a fictitious domain.
منابع مشابه
Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
متن کاملDirichlet series and approximate analytical solutions of MHD flow over a linearly stretching sheet
The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...
متن کاملExistence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator
The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملValuing Continuous Barrier Options on a Lattice solution for a Stochastic Dirichlet Problem¤
The stochastic Dirichlet problem computes values within a domain of certain functions with known values at the boundary of the domain. When applied to valuing barrier options, solutions are expressed as expected discounted payo¤s achieved at hitting times to the boundary of the domain. We construct a lattice solution to the stochastic Dirichlet problem. In between time steps on the lattice, the...
متن کاملOptimization of sums and quotients of Dirichlet-Laplacian eigenvalues
We study some shape optimization problems related to sums and quotients of Dirichlet Laplacian eigenvalues kn for planar domains. We show how to minimize a sum ðkk þ kkþ1ÞjXj; k 1⁄4 1;2; . . . when the minimizing domain is disconnected. In particular, we prove that the optimizers in the cases k 1⁄4 1 and k 1⁄4 2 are connected. We develop a numerical method for solving shape optimization eigenva...
متن کامل