Changes in inertia and effect on turning effort across different wheelchair configurations.
نویسندگان
چکیده
When executing turning maneuvers, manual wheelchair users must overcome the rotational inertia of the wheelchair system. Differences in wheelchair rotational inertia can result in increases in torque required to maneuver, resulting in greater propulsion effort and stress on the shoulder joints. The inertias of various configurations of an ultralightweight wheelchair were measured using a rotational inertia-measuring device. Adjustments in axle position, changes in wheel and tire type, and the addition of several accessories had various effects on rotational inertias. The configuration with the highest rotational inertia (solid tires, mag wheels with rearward axle) exceeded the configuration with the lowest (pneumatic tires, spoke wheels with forward axle) by 28%. The greater inertia requires increased torque to accelerate the wheelchair during turning. At a representative maximum acceleration, the reactive torque spanned the range of 11.7 to 15.0 N-m across the wheelchair configurations. At higher accelerations, these torques exceeded that required to overcome caster scrub during turning. These results indicate that a wheelchair's rotational inertia can significantly influence the torque required during turning and that this influence will affect active users who turn at higher speeds. Categorizing wheelchairs using both mass and rotational inertia would better represent differences in effort during wheelchair maneuvers.
منابع مشابه
Evaluation of wheelchair resistive forces during straight and turning trajectories across different wheelchair configurations using free-wheeling coast-down test.
The purpose of this study was to develop a simple approach to evaluate resistive frictional forces acting on manual wheelchairs (MWCs) during straight and turning maneuvers. Using a dummy-occupied MWC, decelerations were measured via axle-mounted encoders during a coast-down protocol that included straight trajectories and fixed-wheel turns. Eight coast-down trials were conducted to test repeat...
متن کاملThe effect of knee-flexion angle on wheelchair turning.
The increasingly popular hyperflexed knee-flexion angle was evaluated to determine its effects on wheelchair turning. Twenty able-bodied subjects were tested comparing the effect of full knee extension and full knee flexion on a number of parameters. We empirically measured the angular velocity of subjects spinning 720 degrees in place, subjects' perceived ease of wheelchair turning, the overal...
متن کاملInfluence of increased rotational inertia on the turning performance of humans.
The rotational inertia of an animal can be expected to influence directly its ability to execute rapid turning maneuvers. We hypothesized that a ninefold increase in rotational inertia would reduce maximum turning performance to one-ninth of control values. To test this prediction, we increased rotational inertia about the vertical axis of six human subjects and measured their ability to turn d...
متن کاملWheelchair stabilization by the control of a spatial 3-RRS mechanism
A spatial parallel mechanism namely 3-RRS mechanism has been assigned to be attached to the seat of a standard electric wheelchair to prevent the turning over of the handicapped sitting on the wheelchair. The system of the wheelchair and the mechanism is a self-balancing robotic wheelchair and has coped with several road conditions. A stability control system calculates the proper moments on th...
متن کاملScaling of rotational inertia in murine rodents and two species of lizard.
Because the force required to rotate a body about an axis is directly proportional to its rotational inertia about the axis, it is likely that animals with high rotational inertia would be constrained in their turning abilities. Given that rotational inertia scales with mass(1.67) in geometrically similar animals, whereas the ability to apply torque scales with mass(1.00), larger animals would ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of rehabilitation research and development
دوره 50 10 شماره
صفحات -
تاریخ انتشار 2013