Sequence-specific recognition and cleavage of duplex DNA via triple-helix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate.
نویسندگان
چکیده
Homopyrimidine oligodeoxynucleotides recognize the major groove of the DNA double helix at homopurine.homopyrimidine sequences by forming local triple helices. Phenanthroline was covalently attached to the 5' end of an 11-mer homopyrimidine oligonucleotide of sequence d(TTTCCTCCTCT). Simian virus 40 DNA, which contains a single target site for this oligonucleotide, was used as a substrate for the phenanthroline-oligonucleotide conjugate. In the presence of copper ions and a reducing agent, a single specific double-strand cleavage site was observed at 20 degrees C by agarose gel electrophoresis. The efficiency of double-strand cleavage was greater than 70% at 20 degrees C and pH 7.4. Secondary cleavage sites were observed when binding of the oligonucleotide to mismatched sequences was allowed to take place at low temperature. The exact location of the cleavage sites was determined by polyacrylamide gel electrophoresis of denatured fragments by using both simian virus 40 DNA and a synthetic DNA fragment containing the target sequence. The asymmetric distribution of the cleavage sites on the two strands revealed that the cleavage reaction took place in the minor groove even though the phenanthroline linker was located in the major groove. Linkers of different lengths were used to tether phenanthroline to the oligonucleotide and their relative efficacies of DNA cleavage were compared. Based on these comparative studies and on model building, it is proposed that the phenanthroline ring carried by the oligonucleotide intercalates from the major groove and that copper chelation locks the complex in place from within the minor groove where the cleavage reaction occurs.
منابع مشابه
Sequence-specific intercalating agents: intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide-intercalator conjugates.
An acridine derivative was covalently linked to the 5' end of a homopyrimidine oligonucleotide. Specific binding to a homopurine-homopyrimidine sequence of duplex DNA was demonstrated by spectroscopic studies (absorption and fluorescence) and by "footprinting" experiments with a copper phenanthroline chelate used as an artificial nuclease. A hypochromism and a red shift of the acridine absorpti...
متن کاملDeveloping a programmed restriction endonuclease for highly specific DNA cleavage
Specific cleavage of large DNA molecules at few sites, necessary for the analysis of genomic DNA or for targeting individual genes in complex genomes, requires endonucleases of extremely high specificity. Restriction endonucleases (REase) that recognize DNA sequences of 4-8 bp are not sufficiently specific for this purpose. In principle, the specificity of REases can be extended by fusion to se...
متن کاملOligodeoxynucleotide-directed photo-induced cross-linking of HIV proviral DNA via triple-helix formation.
The HIV proviral genome contains two copies of a 16 bp homopurine.homopyrimidine sequence which overlaps the recognition and cleavage site of the Dra I restriction enzyme. Psoralen was attached to the 16-mer homopyrimidine oligonucleotide, d5'(TTTTCT-TTTCCCCCCT)3', which forms a triple helix with this HIV proviral sequence. Two plasmids, containing part of the HIV proviral DNA, with either one ...
متن کاملPadlock oligonucleotides for duplex DNA based on sequence-specific triple helix formation.
An oligonucleotide was circularized around double-stranded DNA thanks to triple helix formation. Short oligonucleotides are known to be able to form DNA triple helices by binding into the DNA major groove at an oligopurine.oligopyrimidine sequence. After sequence-specific recognition of a double-stranded DNA target through triple helix formation, the ends of the triplex-forming oligonucleotide ...
متن کاملTriple helix formation with purine-rich phosphorothioate-containing oligonucleotides covalently linked to an acridine derivative.
Purine-rich (GA)- and (GT)-containing oligophosphorothioates were investigated for their triplex-forming potential on a 23 bp DNA duplex target. In our system, GA-containing oligophosphorothioates (23mer GA-PS) were capable of triplex formation with binding affinities lower than (GA)-containing oligophosphodiesters (23mer GA-PO). The orientation of the third strand 23mers GA-PS and GA-PO was an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 86 24 شماره
صفحات -
تاریخ انتشار 1989