Characterization of the image-derived carotid artery input function using independent component analysis for the quantitation of [18F] fluorodeoxyglucose positron emission tomography images Image-derived input function by ICA for FDG-PET

نویسندگان

  • K Chen
  • X Chen
  • R Renaut
  • G E Alexander
  • D Bandy
  • H Guo
  • E M Reiman
چکیده

We previously developed a noninvasive technique for the quantification of fluorodeoxyglucose (FDG) positron emission tomography (PET) images using an imagederived input function obtained from a manually drawn carotid artery region. Here, we investigate the use of independent component analysis (ICA) for more objective identification of the carotid artery and surrounding tissue regions. Using FDG PET data from 22 subjects, the ICA was applied to an easily defined cubical region including the carotid artery and neighboring tissue. Carotid artery and tissue time-activity-curves and 3 venous samples were used to generate spillover and partial volume-corrected input functions and to calculate the parametric images of the cerebral metabolic rate for glucose (CMRgl). Different from a blood-sampling-free ICA approach, the results from our ICA approach are numerically well-matched to the ones based on the arterial blood sampled input function. In fact, the ICA-derived input functions and CMRgl measurements were not only highly correlated (correlation coefficients >0.99) to, but also highly comparable (regression slopes between 0.92 and 1.09) with those generated using arterial blood sampling. Moreover, the reliability of the ICA-derived input function remained high despite variations in the location and size of the cubical region. The ICA procedure makes it possible to quantify FDG PET images in an objective and reproducible manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the image-derived carotid artery input function using independent component analysis

We previously developed a noninvasive technique for the quantification of fluorodeoxyglucose (FDG) positron emission tomography (PET) images using an image-derived input function obtained from a manually drawn carotid artery region. Here, we investigate the use of independent component analysis (ICA) for more objective identification of the carotid artery and surrounding tissue regions. Using F...

متن کامل

Estimation of an image derived input function with MR-defined carotid arteries in FDG-PET human studies using a novel partial volume correction method.

Kinetic analysis of 18F-fluorodeoxyglucose positron emission tomography data requires an accurate knowledge the arterial input function. The gold standard method to measure the arterial input function requires collection of arterial blood samples and is an invasive method. Measuring an image derived input function is a non-invasive alternative but is challenging due to partial volume effects ca...

متن کامل

Noninvasive Extraction of Input Function from Carotid Artery in H2 O Dynamic Brain Positron Emission Tomography Using Independent Component Analysis

For the absolute quantification of regional cerebral blood flow (rCBF) by means of H2 15 O positron emission tomography (PET) and kinetic modeling, arterial input function should be determined accurately. Even if arterial blood sampling, as an input function, provides an accurate time-activity curve (TAC), it is invasive and delay from carotid artery to radial artery should be corrected. Since ...

متن کامل

Image Derived Input Function for [18F]-FEPPA: Application to Quantify Translocator Protein (18 kDa) in the Human Brain

In [18F]-FEPPA positron emission topography (PET) imaging, automatic blood sampling system (ABSS) is currently the gold standard to obtain the blood time activity curve (TAC) required to extract the input function (IF). Here, we compare the performance of two image-based methods of IF extraction to the ABSS gold standard method for the quantification of translocator protein (TSPO) in the human ...

متن کامل

Improved Imaged-derived Input Function for Study of Human Brain FDG-PET

A reliable, semi-automated method for estimation of a minimally-invasive image-derived input function is validated for human [F]-fluoro deoxyglucose (FDG) positron emission tomography (PET) studies. Two time windows can be recognized in the time activity curve measured from a carotid artery region of interest (CA-ROI). During the first short window of very rapid change, the dominant contaminati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007