A Colored Version of Tverberg's Theorem
نویسندگان
چکیده
The main result of this paper is that given r red, r white, and r green points in the plane, it is possible to form r vertex-disjoint triangles Aj,...,Ar in such a way that A, has one red, one white, and one green vertex for every / = l , . . . , r and the intersection of these triangles is non-empty.
منابع مشابه
Algorithmic aspects of Tverberg's Theorem
We study the complexity of finding Tverberg partitions within various convexity spaces. For the classic geometric version of Tverberg’s theorem, we obtain probabilistic algorithms that are weakly polynomial in both the dimension and the number of points. These algorithms extend to other variations, such as the integer version of Tverberg’s theorem. For geodetic convexity on graphs, we show that...
متن کاملTverberg's theorem with constraints
We extend the topological Tverberg theorem in the following way: Pairs of points are forced to end up in different partition blocks. This leads to the concept of constraint graphs. In Tverberg’s theorem with constraints, we come up with a list of constraints graphs for the topological Tverberg theorem. The proof is based on connectivity results of chessboard-type complexes. Tverberg’s theorem w...
متن کاملScribe: Thành Nguyen
In this lecture note, we describe some properties of convex sets and their connection with a more general model in topological spaces. In particular, we discuss Tverberg's theorem, Borsuk's conjecture and related problems. First we give some basic properties of convex sets in R d. a i is also in S. Definition 2. Convex hull of a set A, denoted by conv(A), is the set of all convex combination of...
متن کامل3N colored points in a plane
More than 50 years ago, the Cambridge undergraduate Bryan Birch showed that “3N points in a plane” can be split into N triples that span triangles with a non-empty intersection. He also conjectured a sharp, higher-dimensional version of this, which was proved by Helge Tverberg in 1964 (freezing, in a hotel room in Manchester). In a 1988 Computational Geometry paper, Bárány, Füredi & Lovász note...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کامل