On the distinctness of binary sequences derived from $2$-adic expansion of m-sequences over finite prime fields

نویسندگان

  • Yupeng Jiang
  • Dongdai Lin
چکیده

Let p be an odd prime with 2-adic expansion ∑k i=0 pi · 2 . For a sequence a = (a(t))t≥0 over Fp, each a(t) belongs to {0, 1, . . . , p − 1} and has a unique 2-adic expansion a(t) = a0(t) + a1(t) · 2 + · · ·+ ak(t) · 2 , with ai(t) ∈ {0, 1}. Let ai denote the binary sequence (ai(t))t≥0 for 0 ≤ i ≤ k. Assume i0 is the smallest index i such that pi = 0 and a and b are two different m-sequences generated by a same primitive characteristic polynomial over Fp. We prove that for i 6= i0 and 0 ≤ i ≤ k, ai = bi if and only if a = b, and for i = i0, ai0 = bi0 if and only if a = b or a = −b. Then the period of ai is equal to the period of a if i 6= i0 and half of the period of a if i = i0. We also discuss a possible application of the binary sequences ai.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new result on the distinctness of primitive sequences over Z/(pq) modulo 2

Let Z=(pq) be the integer residue ring modulo pq with odd prime numbers p and q. This paper studies the distinctness problem of modulo 2 reductions of two primitive sequences over Z=(pq), which has been studied by H.J. Chen and W.F. Qi in 2009. First, it is shown that almost every element in Z=(pq) occurs in a primitive sequence of order n > 2 over Z=(pq). Then based on this element distributio...

متن کامل

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

Expansion and linear complexity of the coordinate sequences over Galois rings

The coordinate sequences of the trace sequences over a Galois ring defined by the trace function are used significantly in cryptography, coding and communication applications. In this paper, a p-adic expansion for the coordinate sequences in terms of elementary symmetric functions is provided for the case that the characteristic p of the residue field of the Galois ring is an arbitrary prime, w...

متن کامل

Structure of finite wavelet frames over prime fields

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $mathbb{W}_p$.

متن کامل

Nonlinear Multiuser Receiver for Optimized Chaos-Based DS-CDMA Systems

Chaos based communications have drawn increasing attention over the past years. Chaotic signals are derived from non-linear dynamic systems. They are aperiodic, broadband and deterministic signals that appear random in the time domain. Because of these properties, chaotic signals have been proposed to generate spreading sequences for wide-band secure communication recently. Like conventional DS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1402.4590  شماره 

صفحات  -

تاریخ انتشار 2014