Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms

نویسندگان

  • Elias Seif
  • Jessica Leigh
  • Yu Liu
  • Ingeborg Roewer
  • Lise Forget
  • B. Franz Lang
چکیده

To generate data for comparative analyses of zygomycete mitochondrial gene expression, we sequenced mtDNAs of three distantly related zygomycetes, Rhizopus oryzae, Mortierella verticillata and Smittium culisetae. They all contain the standard fungal mitochondrial gene set, plus rnpB, the gene encoding the RNA subunit of the mitochondrial RNase P (mtP-RNA) and rps3, encoding ribosomal protein S3 (the latter lacking in R.oryzae). The mtP-RNAs of R.oryzae and of additional zygomycete relatives have the most eubacteria-like RNA structures among fungi. Precise mapping of the 5' and 3' termini of the R.oryzae and M.verticillata mtP-RNAs confirms their expression and processing at the exact sites predicted by secondary structure modeling. The 3' RNA processing of zygomycete mitochondrial mRNAs, SSU-rRNA and mtP-RNA occurs at the C-rich sequence motifs similar to those identified in fission yeast and basidiomycete mtDNAs. The C-rich motifs are included in the mature transcripts, and are likely generated by exonucleolytic trimming of RNA 3' termini. Zygomycete mtDNAs feature a variety of insertion elements: (i) mtDNAs of R.oryzae and M.verticillata were subject to invasions by double hairpin elements; (ii) genes of all three species contain numerous mobile group I introns, including one that is closest to an intron that invaded angiosperm mtDNAs; and (iii) at least one additional case of a mobile element, characterized by a homing endonuclease insertion between partially duplicated genes [Paquin,B., Laforest,M.J., Forget,L., Roewer,I., Wang,Z., Longcore,J. and Lang,B.F. (1997) Curr. Genet., 31, 380-395]. The combined mtDNA-encoded proteins contain insufficient phylogenetic signal to demonstrate monophyly of zygomycetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary variation in bacterial RNase P RNAs.

Sequences encoding RNase P RNAs from representatives of the last remaining classical phyla of Bacteria have been determined, completing a general phylogenetic survey of RNase P RNA sequence and structure. This broad sampling of RNase P RNAs allows some refinement of the secondary structure, and reveals patterns in the evolutionary variation of sequences and secondary structures. Although the se...

متن کامل

Explosive invasion of plant mitochondria by a group I intron.

Group I introns are mobile, self-splicing genetic elements found principally in organellar genomes and nuclear rRNA genes. The only group I intron known from mitochondrial genomes of vascular plants is located in the cox1 gene of Peperomia, where it is thought to have been recently acquired by lateral transfer from a fungal donor. Southern-blot surveys of 335 diverse genera of land plants now s...

متن کامل

A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing.

Comparative genomics has provided evidence for numerous conserved protein domains whose functions remain unknown. We identified a protein harboring "domain of unknown function 860" (DUF860) as a component of group II intron ribonucleoprotein particles in maize chloroplasts. This protein, assigned the name WTF1 ("what's this factor?"), coimmunoprecipitates from chloroplast extract with group II ...

متن کامل

Group II intron splicing factors in plant mitochondria

Group II introns are large catalytic RNAs (ribozymes) which are found in bacteria and organellar genomes of several lower eukaryotes, but are particularly prevalent within the mitochondrial genomes (mtDNA) in plants, where they reside in numerous critical genes. Their excision is therefore essential for mitochondria biogenesis and respiratory functions, and is facilitated in vivo by various pro...

متن کامل

Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria.

Horizontal gene transfer is surprisingly common among plant mitochondrial genomes. The first well-established case involves a homing group I intron in the mitochondrial cox1 gene shown to have been frequently acquired via horizontal transfer in angiosperms. Here, we report extensive additional sampling of angiosperms, including 85 newly sequenced introns from 30 families. Analysis of all availa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005