Metal-semiconductor-metal neutron detectors based on hexagonal boron nitride epitaxial layers
نویسندگان
چکیده
Hexagonal boron nitride (hBN) possesses extraordinary potential for solid-state neutron detector applications. This stems from the fact that the boron-10 (B) isotope has a capture cross-section of 3840 barns for thermal neutrons that is orders of magnitude larger than other isotopes. Epitaxial layers of hBN have been synthesized by metal organic chemical vapor deposition (MOCVD). Experimental measurements indicated that the thermal neutron absorption coefficient and length of natural hBN epilayers are about 0.0036 μm and 277 μm, respectively. To partially address the key requirement of long carrier lifetime and diffusion length for a solid-state neutron detector, micro-strip metal–semiconductor–metal detectors were fabricated and tested. A good current response was generated in these detectors using continuous irradiation with a thermal neutron beam, corresponding to an effective conversion efficiency approaching ~80% for absorbed neutrons.
منابع مشابه
Semiconducting hexagonal boron nitride for deep ultraviolet photonics
Hexagonal boron nitride (hBN) has been recognized as an important material for various device applications and as a template for graphene electronics. Low-dimensional hBN is expected to possess rich physical properties, similar to graphene. The synthesis of wafer-scale semiconducting hBN epitaxial layers with high crystalline quality and electrical conductivity control is highly desirable. We r...
متن کاملHexagonal boron nitride epitaxial layers as neutron detector materials
Micro-strip metal–semiconductor–metal detectors for thermal neutron sensing were fabricated from hexagonal boron nitride (hBN) epilayers synthesized by metal organic chemical vapor deposition. Experimental measurements indicated that the thermal neutron absorption coefficient and length of natural hBN epilayers are about 0.00361 mm 1 and 277 mm, respectively. A continuous irradiation with a the...
متن کاملRealization of highly efficient hexagonal boron nitride neutron detectors
We report the achievement of highly efficient B enriched hexagonal boron nitride (h-BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h-BN wafers 43 lm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple ver...
متن کاملMetal-free spin and spin-gapless semiconducting heterobilayers: monolayer boron carbonitrides on hexagonal boron nitride.
The interfaces between monolayer boron carbonitrides and hexagonal boron nitride (h-BN) play an important role in their practical applications. Herein, we respectively investigate the structural and electronic properties of two metal-free heterobilayers constructed by vertically stacking two-dimensional (2D) spintronic materials (B4CN3 and B3CN4) on a h-BN monolayer from the viewpoints of latti...
متن کاملEvidence for Defect-Mediated Tunneling in Hexagonal Boron Nitride-Based Junctions.
We investigate electron tunneling through atomically thin layers of hexagonal boron nitride (hBN). Metal (Cr/Au) and semimetal (graphite) counter-electrodes are employed. While the direct tunneling resistance increases nearly exponentially with barrier thickness as expected, the thicker junctions also exhibit clear signatures of Coulomb blockade, including strong suppression of the tunnel curre...
متن کامل