Elevated NF-kappaB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function.
نویسندگان
چکیده
We have recently demonstrated that dendritic cells (DC) prepared from nonobese diabetic (NOD) mice, a spontaneous model for insulin-dependent diabetes mellitus, exhibit elevated levels of NF-kappaB activation upon stimulation. In the current study, we investigated the influence of dysregulation of NF-kappaB activation on the APC function of bone marrow-derived DC prepared from NOD vs BALB/c and nonobese diabetes-resistant mice. NOD DC pulsed with either peptide or virus were found to be more efficient than BALB/c DC at stimulating in vitro naive Ag-specific CD8+ T cells. The T cell stimulatory capacity of NOD DC was suppressed by gene transfer of a modified form of IkappaBalpha, indicating a direct role for NF-kappaB in this process. Furthermore, neutralization of IL-12(p70) to block autocrine-mediated activation of DC also significantly reduced the capacity of NOD DC to stimulate T cells. Despite a reduction in low molecular mass polypeptide-2 expression relative to BALB/c DC, no effect on proteasome-dependent events associated with the NF-kappaB signaling pathway or Ag processing was detected in NOD DC. Finally, DC from nonobese diabetes-resistant mice, a strain genotypically similar to NOD yet disease resistant, resembled BALB/c and not NOD DC in terms of the level of NF-kappaB activation, secretion of IL-12(p70) and TNF-alpha, and the capacity to stimulate T cells. Therefore, elevated NF-kappaB activation and enhanced APC function are specific for the NOD genotype and correlate with the progression of insulin-dependent diabetes mellitus. These results also provide further evidence indicating a key role for NF-kappaB in regulating the APC function of DC.
منابع مشابه
NF-kappa B hyperactivation has differential effects on the APC function of nonobese diabetic mouse macrophages.
Type 1 diabetes is characterized by a chronic inflammatory response resulting in the selective destruction of the insulin-producing beta cells. We have previously demonstrated that dendritic cells (DCs) prepared from nonobese diabetic (NOD) mice, a model for spontaneous type 1 diabetes, exhibit hyperactivation of NF-kappaB resulting in an increased capacity to secrete proinflammatory cytokines ...
متن کاملPrevention of diabetes in NOD mice by administration of dendritic cells deficient in nuclear transcription factor-kappaB activity.
Abnormalities of dendritic cells (DCs) have been identified in type 1 diabetic patients and in nonobese diabetic (NOD) mice that are associated with augmented nuclear transcription factor (NF)-kappaB activity. An imbalance that favors development of the immunogenic DCs may predispose to the disease, and restoration of the balance by administration of DCs deficient in NF-kappaB activity may prev...
متن کاملGnotobiotic IL-10−/−; NF-κBEGFP Mice Develop Rapid and Severe Colitis Following Campylobacter jejuni Infection
Limited information is available on the molecular mechanisms associated with Campylobacter jejuni (C. jejuni) induced food-borne diarrheal illnesses. In this study, we investigated the function of TLR/NF-kappaB signaling in C. jejuni induced pathogenesis using gnotobiotic IL-10(-/-); NF-kappaB(EGFP) mice. In vitro analysis showed that C. jejuni induced IkappaB phosphorylation, followed by enhan...
متن کاملImmunoregulation of dendritic cells by IL-10 is mediated through suppression of the PI3K/Akt pathway and of IkappaB kinase activity.
Interleukin-10 (IL-10) has potent immunoregulatory effects on the maturation and the antigen-presenting cell (APC) function of dendritic cells (DCs). The molecular basis underlying these effects in DCs, however, is ill defined. It is well established that the transcription factor NF-kappaB is a key regulator of DC development, maturation, and APC function. This study was initiated to determine ...
متن کاملBalance between NF-kappaB and JNK/AP-1 activity controls dendritic cell life and death.
The life cycle of dendritic cells (DCs) must be precisely regulated for proper functioning of adaptive immunity. However, signaling pathways actively mediating DC death remain enigmatic. Here we describe a novel mechanism of hierarchical transcriptional control of DC life and death. Ligation of tumor necrosis factor receptor superfamily (TNFR-SF) members on DCs and cognate contact with T cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 168 1 شماره
صفحات -
تاریخ انتشار 2002