On crepant resolutions of 2-parameter series of Gorenstein cyclic quotient singularities

نویسندگان

  • Dimitrios I. Dais
  • Martin Henk
چکیده

An immediate generalization of the classical McKay correspondence for Gorenstein quotient spaces C/G in dimensions r ≥ 4 would primarily demand the existence of projective, crepant, full desingularizations. Since this is not always possible, it is natural to ask about special classes of such quotient spaces which would satisfy the above property. In this paper we give explicit necessary and sufficient conditions under which 2-parameter series of Gorenstein cyclic quotient singularities have torus-equivariant resolutions of this specific sort in all dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 8 D ec 2 00 5 On the Existence of Crepant Resolutions of Gorenstein Abelian Quotient Singularities in Dimensions ≥ 4 Dimitrios

For which finite subgroups G of SL(r,C), r ≥ 4, are there crepant desingularizations of the quotient space Cr/G? A complete answer to this question (also known as “Existence Problem” for such desingularizations) would classify all those groups for which the high-dimensional versions of McKay correspondence are valid. In the paper we deal with this question in the case of abelian finite subgroup...

متن کامل

All Abelian Quotient C.i.-singularities Admit Projective Crepant Resolutions in All Dimensions All Abelian Quotient C.i.-singularities Admit Projective Crepant Resolutions in All Dimensions

For Gorenstein quotient spaces C d =G, a direct generalization of the classical McKay correspondence in dimensions d 4 would primarily demand the existence of projective, crepant desingularizations. Since this turned out to be not always possible, Reid asked about special classes of such quotient spaces which would satisfy the above property. We prove that the underlying spaces of all Gorenstei...

متن کامل

All Abelian Quotient C.I.-Singularities Admit Projective Crepant Resolutions in All Dimensions

For Gorenstein quotient spaces C/G, a direct generalization of the classical McKay correspondence in dimensions d ≥ 4 would primarily demand the existence of projective, crepant desingularizations. Since this turned out to be not always possible, Reid asked about special classes of such quotient spaces which would satisfy the above property. We prove that the underlying spaces of all Gorenstein...

متن کامل

On a series of Gorenstein cyclic quotient singularities admitting a unique projective crepant resolution

Let G be a finite subgroup of SL(r,C). In dimensions r = 2 and r = 3, McKay correspondence provides a natural bijection between the set of irreducible representations of G and a cohomology-ring basis of the overlying space of a projective, crepant desingularization of C/G. For r = 2 this desingularization is unique and is known to be determined by the Hilbert scheme of the Gorbits. Similar stat...

متن کامل

0 On Hypersurface Quotient Singularity of Dimension 4

We consider geometrical problems on Gorenstein hypersurface orbifolds of dimension n ≥ 4 through the theory of Hilbert scheme of group orbits. For a linear special group G acting on C n , we study the G-Hilbert scheme, Hilb(C n ), and crepant resolutions of C n /G for G=the A-type abelian group Ar(n). For n = 4, we obtain the explicit structure of Hilb r(C 4 ). The crepant resolutions of C 4 /G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998