Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice.
نویسندگان
چکیده
Drought stress is a major limiting factor for crop production. Cuticular wax plays an important role in preventing water loss from drought stress. However, the genetic control of cuticular wax deposition under drought stress conditions has not been characterized. Here, we identified a rice gene Drought-Induced Wax Accumulation 1 (DWA1) encoding a very large protein (2,391 aa in length) containing multiple enzymatic structures, including an oxidoreductase-like domain; a prokaryotic nonribosomal peptide synthetase-like module, including an AMP-binding domain; and an allene oxide synthase-like domain. This previously unreported putative megaenzyme is conserved in vascular plants. A dwa1 KO mutant was highly sensitive to drought stress relative to the WT. DWA1 was preferentially expressed in vascular tissues and epidermal layers and strongly induced by drought stress. The dwa1 mutant was impaired in cuticular wax accumulation under drought stress, which significantly altered the cuticular wax composition of the plant, resulting in increased drought sensitivity. The mutant had reduced levels of very-long-chain fatty acids, and plants overexpressing DWA1 showed elevated levels of very-long-chain fatty acids relative to the WT. The expression of many wax-related genes was significantly suppressed in dwa1 under drought conditions. The AMP-binding domain exhibited in vitro enzymatic activity in activating long-chain fatty acids to form acyl-CoA. Our results suggest that DWA1 controls drought resistance by regulating drought-induced cuticular wax deposition in rice. This finding may have significant implications for improving the drought resistance of crop varieties.
منابع مشابه
Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice
CONSTANS (CO)-like genes have been intensively investigated for their roles in the regulation of photoperiodic flowering, but very limited information has been reported on their functions in other biological processes. Here, we found that a CO-like gene, Ghd2 (Grain number, plant height, and heading date2), which can increase the yield potential under normal growth condition just like its homol...
متن کاملOverexpression of OsMYB48-1, a Novel MYB-Related Transcription Factor, Enhances Drought and Salinity Tolerance in Rice
MYB-type transcription factors (TFs) play essential roles in plant growth, development and respond to environmental stresses. Role of MYB-related TFs of rice in drought stress tolerance is not well documented. Here, we report the isolation and characterization of a novel MYB-related TF, OsMYB48-1, of rice. Expression of OsMYB48-1 was strongly induced by polyethylene glycol (PEG), abscisic acid ...
متن کاملA Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice.
Mitogen-activated protein kinase (MAPK) cascades have been identified in various signaling pathways involved in plant development and stress responses. We identified a drought-hypersensitive mutant (drought-hypersensitive mutant1 [dsm1]) of a putative MAPK kinase kinase (MAPKKK) gene in rice (Oryza sativa). Two allelic dsm1 mutants were more sensitive than wild-type plants to drought stress at ...
متن کاملOsJAZ1 Attenuates Drought Resistance by Regulating JA and ABA Signaling in Rice
Jasmonates (JAs) and abscisic acid (ABA) are phytohormones known play important roles in plant response and adaptation to various abiotic stresses including salinity, drought, wounding, and cold. JAZ (JASMONATE ZIM-domain) proteins have been reported to play negative roles in JA signaling. However, direct evidence is still lacking that JAZ proteins regulate drought resistance. In this study, Os...
متن کاملRice OsGL1-6 Is Involved in Leaf Cuticular Wax Accumulation and Drought Resistance
Cuticular wax is a class of organic compounds that comprises the outermost layer of plant surfaces. Plant cuticular wax, the last barrier of self-defense, plays an important role in plant growth and development. The OsGL1-6 gene, a member of the fatty aldehyde decarbonylase gene family, is highly homologous to Arabidopsis CER1, which is involved in cuticular wax biosynthesis. However, whether O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 44 شماره
صفحات -
تاریخ انتشار 2013