The role of human CYP2C8 and CYP2C9 variants in pioglitazone metabolism in vitro.

نویسندگان

  • Eugen Muschler
  • Jawahar Lal
  • Alexander Jetter
  • Anke Rattay
  • Ulrich Zanger
  • Gregor Zadoyan
  • Uwe Fuhr
  • Julia Kirchheiner
چکیده

The cytochrome P450 enzyme CYP2C8 appears to have a major role in pioglitazone metabolism. The present study was conducted to further clarify the role of individual CYPs and of the CYP2C8/9 polymorphisms in the primary metabolism of pioglitazone in vitro. Pioglitazone (2-400 microM) was incubated with isolated cytochrome P450 enzymes or human liver microsomes, some of them carrying either the CYP2C8*3/*3 genotype (and also the CYP2C9*2/*2 genotype) or the CYP2C8*1/*1 genotype (five samples each). The formation of the primary pioglitazone metabolite M-IV was monitored by HPLC. Enzyme kinetics were estimated assuming a single binding site. Mean intrinsic clearance of pioglitazone to the metabolite M-IV was highest for CYP2C8 and CYP1A2 with 58 pmol M-IV/min/nmol CYP P450/microM pioglitazone each, 53 for CYP2D6*1, 40 for CYP2C19*1, and 34 for CYP2C9*2, respectively. CYP2A6, CYP2B6, CYP2C9*1, CYP2C9*3, CYP2E1, CYP3A4 and CYP3A5 did not form quantifiable amounts of M-IV. CYP2C8*1/*1 microsomes (25 +/- 4 pmol M-IV/min/mg protein/muM pioglitazone) showed lower intrinsic clearance of pioglitazone than CYP2C8*3/*3 microsomes (35 +/- 9, p = 0.04). In all samples, metabolite formation showed substrate inhibition, while pioglitazone did not inhibit CYP2C8-mediated paclitaxel metabolism. CYP2C8, CYP1A2 and CYP2D6 are major CYPs forming M-IV in vitro. The higher activity of CYP2C8*3/CYP2C9*2 microsomes may result from a contribution of CYP2C9*2, or from differences in CYP2C8 expression. The evidence for substrate-specific inhibitory effects of pioglitazone on CYP2C-mediated metabolism needs to be tested in further studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Communication GLUCURONIDATION CONVERTS GEMFIBROZIL TO A POTENT, METABOLISM- DEPENDENT INHIBITOR OF CYP2C8: IMPLICATIONS FOR DRUG-DRUG INTERACTIONS

Gemfibrozil more potently inhibits CYP2C9 than CYP2C8 in vitro, and yet the opposite inhibitory potency is observed in the clinic. To investigate this apparent paradox, we evaluated both gemfibrozil and its major metabolite, an acyl-glucuronide (gemfibrozil 1-Oglucuronide) as direct-acting and metabolism-dependent inhibitors of the major drug-metabolizing cytochrome P450 enzymes (CYP1A2, 2B6, 2...

متن کامل

Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition.

Rosiglitazone and pioglitazone are thiazolidinediones used for treatment of noninsulin-dependent diabetes mellitus. These compounds, along with troglitazone, were evaluated for the ability to induce cytochrome P450 enzymes (P450) in primary human hepatocyte cultures and to inhibit P450 in human microsomes. In induction studies, all three thiazolidinediones caused a dose-dependent increase in CY...

متن کامل

Evaluation of CYP2C8 inhibition in vitro: utility of montelukast as a selective CYP2C8 probe substrate.

Understanding the potential for cytochrome P450 (P450)-mediated drug-drug interactions is a critical step in the drug discovery process. Although in vitro studies with CYP3A4, CYP2C9, and CYP2C19 have suggested the presence of multiple binding regions within the P450 active site based on probe substrate-dependent inhibition profiles, similar studies have not been performed with CYP2C8. The abil...

متن کامل

Reevaluation of the microsomal metabolism of montelukast: major contribution by CYP2C8 at clinically relevant concentrations.

According to published in vitro studies, cytochrome P450 3A4 catalyzes montelukast 21-hydroxylation (M5 formation), whereas CYP2C9 catalyzes 36-hydroxylation (M6), the primary step in the main metabolic pathway of montelukast. However, montelukast is a selective competitive CYP2C8 inhibitor, and our recent in vivo studies suggest that CYP2C8 is involved in its metabolism. We therefore reevaluat...

متن کامل

Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions.

Gemfibrozil more potently inhibits CYP2C9 than CYP2C8 in vitro, and yet the opposite inhibitory potency is observed in the clinic. To investigate this apparent paradox, we evaluated both gemfibrozil and its major metabolite, an acyl-glucuronide (gemfibrozil 1-O-beta-glucuronide) as direct-acting and metabolism-dependent inhibitors of the major drug-metabolizing cytochrome P450 enzymes (CYP1A2, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Basic & clinical pharmacology & toxicology

دوره 105 6  شماره 

صفحات  -

تاریخ انتشار 2009