On a degree sequence analogue of Pósa's conjecture
نویسندگان
چکیده
A famous conjecture of Pósa from 1962 asserts that every graph on n vertices and with minimum degree at least 2n/3 contains the square of a Hamilton cycle. The conjecture was proven for large graphs in 1996 by Komlós, Sárközy and Szemerédi [17]. We prove a degree sequence version of Pósa’s conjecture: Given any η > 0, every graph G of sufficiently large order n contains the square of a Hamilton cycle if its degree sequence d1 ≤ · · · ≤ dn satisfies di ≥ (1/3+η)n+ i for all i ≤ n/3. The degree sequence condition here is asymptotically best possible. Our approach uses a hybrid of the Regularity-Blow-up method and the Connecting-Absorbing method.
منابع مشابه
On Pósa's Conjecture for Random Graphs
The famous Pósa conjecture states that every graph of minimum degree at least 2n/3 contains the square of a Hamilton cycle. This has been proved for large n by Komlós, Sarközy and Szemerédi. Here we prove that if p ≥ n−1/2+ε, then asymptotically almost surely, the binomial random graph Gn,p contains the square of a Hamilton cycle. This provides an ‘approximate threshold’ for the property in the...
متن کاملThomas ’ conjecture over Function Fields for degree 3 Volker
Thomas’ conjecture is, given monic polynomials p1, . . . , pd ∈ Z[a] with 0 < deg p1 < · · · < deg pd, then the Thue equation (over the rational integers) (X − p1(a)Y ) · · · (X − pd(a)Y ) + Y d = 1 has only trivial solutions, provided a ≥ a0 with effective computable a0. We consider a function field analogue of Thomas’ conjecture in case of degree d = 3. Moreover we find a counterexample to Th...
متن کاملThomas ’ conjecture over Function Fields par
Thomas’ conjecture is, given monic polynomials p1, . . . , pd ∈ Z[a] with 0 < deg p1 < · · · < deg pd, then the Thue equation (over the rational integers) (X − p1(a)Y ) · · · (X − pd(a)Y ) + Y d = 1 has only trivial solutions, provided a ≥ a0 with effective computable a0. We consider a function field analogue of Thomas’ conjecture in case of degree d = 3. Moreover we find a counterexample to Th...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملHow to avoid using the Regularity Lemma: Pósa's conjecture revisited
In this paper we investigate how the use of the Regularity Lemma and the Blow-up Lemma can be avoided in certain extremal problems of dense graphs. We present the ideas for the following well-known Pósa conjecture on the square of a Hamiltonian cycle. In 1962 Pósa conjectured that any graph G of order n and minimum degree at least 3n contains the square of a Hamiltonian cycle. In an earlier pap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 49 شماره
صفحات -
تاریخ انتشار 2015