Hamiltonian chromatic number of block graphs

نویسنده

  • Devsi Bantva
چکیده

Let G be a simple connected graph of order n. A hamiltonian coloring c of a graph G is an assignment of colors (non-negative integers) to the vertices of G such that D(u, v) + |c(u) − c(v)| ≥ n − 1 for every two distinct vertices u and v of G, where D(u, v) denotes the detour distance between u and v in G which is the length of the longest path between u and v. The value hc(c) of a hamiltonian coloring c is the maximum color assigned to a vertex of G. The hamiltonian chromatic number, denoted by hc(G), is min{hc(c)} taken over all hamiltonian coloring c of G. In this paper, we give a necessary and sufficient condition to achieve a lower bound for the hamiltonian chromatic number of block graphs given in [1, Theorem 1]. We present an algorithm for optimal hamiltonian coloring of a special class of block graphs, namely SDB(p/2) block graphs. We characterize level-wise regular block graphs and extended star of blocks achieving this lower bound. Submitted: May 2016 Reviewed: November 2016 Revised: December 2016 Reviewed: December 2016 Revised: December 2016 Accepted: December 2016 Final: January 2017 Published: February 2017 Article type: Regular paper Communicated by: M. Kaykobad and R. Petreschi E-mail address: [email protected] (Devsi Bantva) 354 Devsi Bantva Hamiltonian chromatic number of block graphs

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

Common Neighborhood Graph

Let G be a simple graph with vertex set {v1, v2, … , vn}. The common neighborhood graph of G, denoted by con(G), is a graph with vertex set {v1, v2, … , vn}, in which two vertices are adjacent if and only if they have at least one common neighbor in the graph G. In this paper, we compute the common neighborhood of some composite graphs. In continue, we investigate the relation between hamiltoni...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

Properties, Proved and Conjectured, of Keller, Mycielski, and Queen Graphs

We prove several results about three families of graphs. For queen graphs, defined from the usual moves of a chess queen, we find the edge-chromatic number in almost all cases. In the unproved case, we have a conjecture supported by a vast amount of computation, which involved the development of a new edge-coloring algorithm. The conjecture is that the edge-chromatic number is the maximum degre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Graph Algorithms Appl.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2017