A calcitonin gene-related peptide receptor antagonist prevents the development of tolerance to spinal morphine analgesia.
نویسندگان
چکیده
Tolerance to morphine analgesia is believed to result from a neuronal adaptation produced by continuous drug administration, although the precise mechanisms involved have yet to be established. Recently, we reported selective alterations in rat spinal calcitonin gene-related peptide (CGRP) markers in morphine-tolerant animals. In fact, increases in CGRP-like immunostaining and decrements in specific [125]hCGRP binding in the superficial laminae of the dorsal horn were correlated with the development of tolerance to the spinal antinociceptive action of morphine. Other spinally located peptides such as substance P, galanin, and neuropeptide Y were unaffected. Thus, the major goal of the present study was to investigate whether the development of tolerance to spinally infused morphine could be modulated by the blockade of dorsal horn CGRP receptors using the potent CGRP antagonist hCGRP(8-37). Indeed, cotreatments with hCGRP(8-37) prevented, in a dose-dependent manner, the development of tolerance to morphine-induced analgesia in both the rat tail-flick/tail-immersion and paw-pressure tests. Moreover, alterations in spinal CGRP markers seen in morphine-tolerant animals were not observed after a coadministration of morphine and hCGRP(8-37). These results demonstrate the existence of specific interaction between CGRP and the development of tolerance to the spinal antinociceptive effects of morphine. They also suggest that CGRP receptor antagonists could become useful adjuncts in the treatment of pain and tolerance to the antinociceptive effects of morphine.
منابع مشابه
Calcitonin gene-related peptide as a regulator of neuronal CaMKII-CREB, microglial p38-NFκB and astroglial ERK-Stat1/3 cascades mediating the development of tolerance to morphine-induced analgesia.
Tolerance to morphine-induced analgesia is an intractable phenomenon, often hindering its prolonged applications in the clinics. The enhanced pronociceptive actions of spinal pain-related molecules such as calcitonin gene-related peptide (CGRP) may underlie this phenomenon and could be a promising target for intervention. We demonstrate here how CGRP regulates the development of morphine analge...
متن کاملA role for protein kinase C-dependent upregulation of adrenomedullin in the development of morphine tolerance in male rats.
Adrenomedullin (AM) belongs to calcitonin gene-related peptide (CGRP) family and is a pronociceptive mediator. This study investigated whether AM plays a role in the development of tolerance to morphine-induced analgesia. Repetitive intrathecal injection of morphine increased the expression of AM-like immunoreactivity (AM-IR) in the spinal dorsal horn and dorsal root ganglion (DRG) neurons. Gan...
متن کاملAssociation of morphine-induced analgesic tolerance with changes in gene expression of GluN1 and MOR1 in rat spinal cord and midbrain
Objective(s): We aimed to examine association of gene expression of MOR1 and GluN1 at mRNA level in the lumbosacral cord and midbrain with morphine tolerance in male Wistar rats. Materials and Methods: Analgesic effects of morphine administrated intraperitoneally at doses of 0.1, 1, 5 and 10 mg/kg were examined using a hot plate test in rats with and without a history of 15 days morphine (10 mg...
متن کاملRole of fosaprepitant, a neurokinin Type 1 receptor antagonist, in morphine-induced antinociception in rats
OBJECTIVES Opioids such as morphine form the cornerstone in the treatment of moderate to severe pain. However, opioids also produce serious side effects such as tolerance. Fosaprepitant is a substance P (SP) receptor antagonist, which is used for treating chemotherapy-induced nausea and vomiting. SP is an important neuropeptide mediating transmission of pain at the spinal level. Thus, it was hy...
متن کاملChanges in beta 1 and beta 2 integrin genes expression in rat lumbar spinal cord is supportive of the inhibitory effect of chronic pain on the development of tolerance to morphine analgesia
Introduction: In order to study the alterations of beta 1 and 2 integrins mRNA level in rat lumbar spinal cord following the induction of chronic pain and its effect on the development of tolerance to morphine analgesia, we examined the level of expression of these genes in the presence of chronic pain, which is an inhibitor of morphine tolerance. We used induction of chronic pain alone and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 7 شماره
صفحات -
تاریخ انتشار 1996