Weight functions, double reciprocity laws, and volume formulas for lattice polyhedra.

نویسنده

  • B Chen
چکیده

We extend the concept of manifold with boundary to weight and boundary weight functions. With the new concept, we obtained the double reciprocity laws for simplicial complexes, cubical complexes, and lattice polyhedra with weight functions. For a polyhedral manifold with boundary, if the weight function has the constant value 1, then the boundary weight function has the constant value 1 on the boundary and 0 elsewhere. In particular, for a lattice polyhedral manifold with boundary, our double reciprocity law with a special parameter reduces to the functional equation of Macdonald; for a lattice polytope especially, the double reciprocity law with a special parameter reduces to the reciprocity law of Ehrhart. Several volume formulas for lattice polyhedra are obtained from the properties of the double reciprocity law. Moreover, the idea of weight and boundary weight leads to a new homology that is not homotopy invariant, but only homeomorphic invariant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reciprocity Algebras and Branching for Classical Symmetric Pairs

We study branching laws for a classical group G and a symmetric subgroup H . Our approach is through the branching algebra, the algebra of covariants for H in the regular functions on the natural torus bundle over the flag manifold for G. We give concrete descriptions of certain subalgebras of the branching algebra using classical invariant theory. In this context, it turns out that the ten cla...

متن کامل

Lower bounds on the coefficients of Ehrhart polynomials

We present lower bounds for the coefficients of Ehrhart polynomials of convex lattice polytopes in terms of their volume. We also introduce two formulas for calculating the Ehrhart series of a kind of a ”weak” free sum of two lattice polytopes and of integral dilates of a polytope. As an application of these formulas we show that Hibi’s lower bound on the coefficients of the Ehrhart series is n...

متن کامل

Dedekind sums : a combinatorial - geometric viewpoint Matthias Beck and Sinai Robins

The literature on Dedekind sums is vast. In this expository paper we show that there is a common thread to many generalizations of Dedekind sums, namely through the study of lattice point enumeration of rational poly-topes. In particular, there are some natural finite Fourier series which we call Fourier-Dedekind sums, and which form the building blocks of the number of partitions of an integer...

متن کامل

Closed formulas for the price and sensitivities of European options under a double exponential jump diffusion model

We derive closed formulas for the prices of European options andtheir sensitivities when the underlying asset follows a double-exponentialjump diffusion model, as considered by S. Kou in 2002. This author hasderived the option price by making use of double series where each termrequires the computation of a sequence of special functions, such thatthe implementation remains difficult for a large...

متن کامل

An Algorithmic Theory of Lattice Points in Polyhedra

We discuss topics related to lattice points in rational polyhedra, including efficient enumeration of lattice points, “short” generating functions for lattice points in rational polyhedra, relations to classical and higher-dimensional Dedekind sums, complexity of the Presburger arithmetic, efficient computations with rational functions, and others. Although the main slant is algorithmic, struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 16  شماره 

صفحات  -

تاریخ انتشار 1998