Rapid manufacturing techniques for the tissue engineering of human heart valves.
نویسندگان
چکیده
Three-dimensional (3D) printing technologies have reached a level of quality that justifies considering rapid manufacturing for medical applications. Herein, we introduce a new approach using 3D printing to simplify and improve the fabrication of human heart valve scaffolds by tissue engineering (TE). Custom-made human heart valve scaffolds are to be fabricated on a selective laser-sintering 3D printer for subsequent seeding with vascular cells from human umbilical cords. The scaffolds will be produced from resorbable polymers that must feature a number of specific properties: the structure, i.e. particle granularity and shape, and thermic properties must be feasible for the printing process. They must be suitable for the cell-seeding process and at the same time should be resorbable. They must be applicable for implementation in the human body and flexible enough to support the full functionality of the valve. The research focuses mainly on the search for a suitable scaffold material that allows the implementation of both the printing process to produce the scaffolds and the cell-seeding process, while meeting all of the above requirements. Computer tomographic data from patients were transformed into a 3D data model suitable for the 3D printer. Our current activities involve various aspects of the printing process, material research and the implementation of the cell-seeding process. Different resorbable polymeric materials have been examined and used to fabricate heart valve scaffolds by rapid manufacturing. Human vascular cells attached to the scaffold surface should migrate additionally into the inner structure of the polymeric samples. The ultimate intention of our approach is to establish a heart valve fabrication process based on 3D rapid manufacturing and TE. Based on the computer tomographic data of a patient, a custom-made scaffold for a valve will be produced on a 3D printer and populated preferably by autologous cells. The long-term goal is to support the growth of a new valve by a 3D structure resorbed by the human body in the course of the growth process. Our current activities can be characterized as basic research in which the fundamental steps of the technical process and its feasibility are investigated.
منابع مشابه
JetValve: Rapid manufacturing of biohybrid scaffolds for biomimetic heart valve replacement.
Tissue engineered scaffolds have emerged as a promising solution for heart valve replacement because of their potential for regeneration. However, traditional heart valve tissue engineering has relied on resource-intensive, cell-based manufacturing, which increases cost and hinders clinical translation. To overcome these limitations, in situ tissue engineering approaches aim to develop scaffold...
متن کاملAutologous human tissue-engineered heart valves: prospects for systemic application.
BACKGROUND Tissue engineering represents a promising approach for the development of living heart valve replacements. In vivo animal studies of tissue-engineered autologous heart valves have focused on pulmonary valve replacements, leaving the challenge to tissue engineer heart valves suitable for systemic application using human cells. METHODS AND RESULTS Tissue-engineered human heart valves...
متن کاملProsthetic Aortic Heart Valves
In this review, the anatomy and structure of the aortic valve and its prostheses are comprehensively discussed. Cardiac anatomy and function, human heart valves and their prostheses are also extensively discussed. The current status of prosthetic heart valves along with the next generation of these devices is broadly deliberated. Ather promising options such astranscatheter technologies (percut...
متن کاملFabrication and characterization of nanofibrous tricuspid valve scaffold based on polyurethane for heart valve tissue engineering
Objective(s): Tissue engineering represents a new approach to solve the current complications of the heart valve replacements by offering viable valve prosthesis with growth and remodeling capability. In this project, electrospinning and dip coating techniques were used to fabricate heart valve constructs from medical grade polyurethane (PU). Methods: Fir...
متن کاملHypoxia induces near-native mechanical properties in engineered heart valve tissue.
BACKGROUND Previous attempts in heart valve tissue engineering (TE) failed to produce autologous valve replacements with native-like mechanical behavior to allow for systemic pressure applications. Because hypoxia and insulin are known to promote protein synthesis by adaptive cellular responses, a physiologically relevant oxygen tension and insulin supplements were applied to the growing heart ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery
دوره 46 4 شماره
صفحات -
تاریخ انتشار 2014