Spinal stiffness increases with axial load: another stabilizing consequence of muscle action.

نویسندگان

  • Ian A F Stokes
  • Mack Gardner-Morse
چکیده

This paper addresses the role of lumbar spinal motion segment stiffness in spinal stability. The stability of the lumbar spine was modelled with loadings of 30 Nm or 60 Nm efforts about each of the three principal axes, together with the partial body weight above the lumbar spine. Two assumptions about motion segment stiffness were made: first the stiffness was represented by an 'equivalent beam' with constant stiffness properties; second the stiffness was updated based on the motion segment axial loading using a relationship determined experimentally from human lumbar spinal specimens tested with 0, 250 and 500 N of axial compressive preload. Two physiologically plausible muscle activation strategies were used in turn for calculating the muscle forces required for equilibrium. Stability analyses provided estimates of the minimum muscle stiffness required for stability. These critical muscle stiffness values decreased when preload effects were used in estimating spinal stiffness in all cases of loadings and muscle activation strategies, indicating that stability increased. These analytical findings emphasize that the spinal stiffness (as well as muscular stiffness) is important in maintaining spinal stability, and that the stiffness-increasing effect of 'preloading' should be taken into account in stability analyses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture.

The stiffness of motion segments, together with muscle actions, stabilizes the spinal column. The objective of this study was to compare the experimentally measured load-displacement behavior of porcine lumbar motion segments in vitro with physiological axial compressive preloads of 0, 200 and 400 N equilibrated in a physiological fluid environment, for small displacements about the neutral pos...

متن کامل

Effect of Device Rigidity and Physiological Loading on Spinal Kinematics after Dynamic Stabilization : An In-Vitro Biomechanical Study.

OBJECTIVE To investigate the effects of posterior implant rigidity on spinal kinematics at adjacent levels by utilizing a cadaveric spine model with simulated physiological loading. METHODS Five human lumbar spinal specimens (L3 to S1) were obtained and checked for abnormalities. The fresh specimens were stripped of muscle tissue, with care taken to preserve the spinal ligaments and facet joi...

متن کامل

Stiffness Matrices for Axial and Bending Deformations of Non-Prismatic Beams with Linearly Varying Thickness

Siffness matrices for axial and bending deformations of a beam having a rectangular cross sectional area of constant width and linearly varying thickness are developed. A consistant load vector for a uniformly distributed lateral load is also calculated, using the principal of potential energy. The matrices are used to obtain numerical results for a variety of beams with non-uniform thickness t...

متن کامل

Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...

متن کامل

Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 2003