Fas apoptosis inhibitory molecule regulates T cell receptor-mediated apoptosis of thymocytes by modulating Akt activation and Nur77 expression.
نویسندگان
چکیده
Fas apoptosis inhibitory molecule (FAIM) has been demonstrated to confer resistance to Fas-induced apoptosis of lymphocytes and hepatocytes in vitro and in vivo. Here, we show that FAIM is up-regulated in thymocytes upon T cell receptor (TCR) engagement and that faim(-/-) thymocytes are highly susceptible to TCR-mediated apoptosis with increased activation of caspase-8 and -9. Furthermore, injection of anti-CD3 antibodies leads to augmented depletion of CD4(+)CD8(+) T cells in the thymus of faim(-/-) mice compared with wild-type control, suggesting that FAIM plays a role in thymocyte apoptosis. Cross-linking of the TCR on faim(-/-) thymocytes leads to an elevated protein level of the orphan nuclear receptor Nur77, which plays a role in thymocyte apoptosis. Interestingly, in the absence of FAIM, there are reduced ubiquitination and degradation of the Nur77 protein. Faim(-/-) thymocytes also exhibit a defective TCR-induced activation of Akt whose activity we now show is required for Nur77 ubiquitination. Further analyses utilizing FAIM-deficient primary thymocytes and FAIM-overexpressing DO-11.10 T cells indicate that FAIM acts upstream of Akt during TCR signaling and influences the localization of Akt to lipid rafts, hence affecting its activation. Taken together, our study defined a TCR-induced FAIM/Akt/Nur77 signaling axis that is critical for modulating the apoptosis of developing thymocytes.
منابع مشابه
Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis.
The transcription factor Nur77 (NGFI-B), a member of the steroid nuclear receptor superfamily, is induced to a high level during T-cell receptor (TCR)-mediated apoptosis. A transgenic dominant-negative Nur77 protein can inhibit the apoptotic process accompanying negative selection in thymocytes, while constitutive expression of Nur77 leads to massive cell death. Nur77-deficient mice, however, h...
متن کاملImmature CD4+CD8+ thymocytes and mature T cells regulate Nur77 distinctly in response to TCR stimulation.
The orphan steroid receptor, Nur77, is thought to be a central participant in events leading to TCR-mediated clonal deletion of immature thymocytes. Interestingly, although both immature and mature murine T cell populations rapidly up-regulate Nur77 after TCR stimulation, immature CD4+CD8+ thymocytes respond by undergoing apoptosis, whereas their mature descendants respond by dividing. To under...
متن کاملAkt phosphorylates and regulates the orphan nuclear receptor Nur77.
The immediate early gene NUR77 (also called NGFI-B) is required for T cell antigen receptor-mediated cell death and is induced to very high levels in immature thymocytes and T cell hybridomas undergoing apoptosis. The Akt (PKB) kinase is a key player in transduction of anti-apoptotic and proliferative signals in T cells. Because Nur77 has a putative Akt phosphorylation site at Ser-350, and phos...
متن کاملCyclosporin A blocks apoptosis by inhibiting the DNA binding activity of the transcription factor Nur77.
Engagement of T-cell receptors (TCRs) on immature thymocytes by self-antigen-major histocompatibility complexes causes the death of self-reactive thymocytes via apoptosis, a phenomenon that establishes T-cell tolerance. Similarly, treatment of thymocytes with anti-TCR antibodies leads to TCR-mediated apoptosis, which can also be induced in T-cell hybridomas. TCR-mediated apoptosis in immature t...
متن کاملInhibition of Nur77/Nurr1 leads to inefficient clonal deletion of self- reactive T cells
The Nur77/Nurr1 family of DNA binding proteins has been reported to be required for the signal transduction of CD3/T cell receptor (TCR)-mediated apoptosis in T cell hybridomas. To determine the role of this family of DNA-binding proteins in thymic clonal deletion, transgenic (Tg) mice bearing a dominant negative mutation were produced. The transgene consisted of a truncated Nur77 (deltaNur77) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 285 16 شماره
صفحات -
تاریخ انتشار 2010