Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes.
نویسندگان
چکیده
Triacylglycerol (TAG) serves as a major energy storage molecule in eukaryotes. In Plasmodium, however, this established function of TAG appears unlikely, despite detecting previously considerable amount of TAG associated with intraerythrocytic parasites, because plasmodial cells have very little capacity to oxidize fatty acids. Thus, it is plausible that TAG and its biosynthesis in Plasmodium have other functions. As a first step in understanding the biological significance of TAG and its biosynthesis to the intraerythrocytic proliferation of Plasmodium falciparum, we performed detailed characterization of TAG metabolism and trafficking in parasitized erythrocyte. Metabolic labeling using radiolabeled-oleic and palmitic acids in association with serum albumin, which have been shown to be among the serum essential factors for intraerythrocytic proliferation of P. falciparum, revealed that accumulation of TAG was strikingly pronounced from trophozoite to schizont, whereas TAG degradation became active from schizont to segmented schizont; the consequent products, free fatty acids, were released into the medium during schizont rupture and/or merozoite release. These results were further supported by visualization of lipid bodies through immunofluorescence and electron microscopy. At the schizont stages, there is some evidence that the lipid bodies are partly localized in the parasitophorous vacuole. Interestingly, the discrete formation and/or trafficking of lipid bodies are inhibited by brefeldin A and trifluoperazine. Inhibition by trifluoperazine hints at least that a de novo TAG biosynthetic pathway via phosphatidic acid contributes to lipid body formation. Indeed, biochemical analysis reveals a higher activity of acyl-CoA:diacylglycerol acyltransferase, the principal enzyme in the sn-glycerol-3-phosphate pathway for TAG synthesis, at trophozoite and schizont stages. Together, these results establish that TAG metabolism and trafficking in P. falciparum-infected erythrocyte occurs in a stage-specific manner during the intraerythrocytic cycle and we propose that these unique and dynamic cellular events participate during schizont rupture and/or merozoite release.
منابع مشابه
Phosphoinositide Metabolism Links cGMP-Dependent Protein Kinase G to Essential Ca2+ Signals at Key Decision Points in the Life Cycle of Malaria Parasites
Many critical events in the Plasmodium life cycle rely on the controlled release of Ca²⁺ from intracellular stores to activate stage-specific Ca²⁺-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP)-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca²⁺ required for ...
متن کاملCharacterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum.
Membranes of erythrocytes infected with Plasmodium falciparum develop protrusions called "knobs." These protrusions are not apparent on erythrocytes infected with young parasites (rings) but develop with the growth of parasites to the trophozoite and schizont stages. The nature and origin of knobs were characterized by comparing the stage-specific proteins of two culture lines of P. falciparum,...
متن کاملDeconvoluting heme biosynthesis to target blood-stage malaria parasites
Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevul...
متن کاملTrafficking of the major virulence factor to the surface of transfected P. falciparum-infected erythrocytes.
After invading human red blood cells (RBCs) the malaria parasite Plasmodium falciparum remodels the host cell by trafficking proteins to the RBC compartment. The virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) is responsible for cytoadherence of infected cells to host endothelial receptors. This protein is exported across the parasite plasma membrane and parasitophorous ...
متن کاملA sequence element associated with the Plasmodium falciparum KAHRP gene is the site of developmental^ regulated protein-DNA interactions
The Plasmodium falciparum gene encoding the knob associated hlstidine-rich protein (KAHRP) is shown to be transcrlptlonally regulated during its expression in the intraerythrocytic cycle as demonstrated by stage specific nuclear run-on analysis. The genomlc organization of the KAHRP gene was determined and the structural basis for the stage specific transcription investigated. A sequence motif ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 117 Pt 8 شماره
صفحات -
تاریخ انتشار 2004