Variable selection in high-dimensional quantile varying coefficient models
نویسندگان
چکیده
In this paper, we propose a two-stage variable selection procedure for high dimensional quantile varying coefficient models. The proposed method is based on basis function approximation and LASSO-type penalties.We show that the first stage penalized estimator with LASSO penalty reduces the model from ultra-high dimensional to a model that has size close to the true model, but contains the true model as a valid sub model. By applying adaptive LASSO penalty to the reduced model, the second stage excludes the remained irrelevant covariates, leading to an estimator consistent in variable selection. A simulation study and the analysis of a real data demonstrate that the proposedmethod performs quite well in finite samples, with regard to dimension reduction and variable selection. © 2013 Elsevier Inc. All rights reserved.
منابع مشابه
New Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models By
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varyingcoefficient functions and the ...
متن کاملNew Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models.
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the...
متن کاملNew Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the...
متن کاملA Unified Variable Selection Approach for Varying Coefficient Models
In varying coefficient models, three types of variable selection problems are of practical interests: separation of varying and constant effects, selection of variables with nonzero varying effects, and selection of variables with nonzero constant effects. Existing variable selection methods in the literature often focus on only one of the three types. In this paper, we develop a unified variab...
متن کاملVariable Selection in Nonparametric and Semiparametric Regression Models
This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 122 شماره
صفحات -
تاریخ انتشار 2013