Unsupervised Learning of Visual Context Using Completed Likelihood Aic

نویسندگان

  • Tao Xiang
  • Shaogang Gong
چکیده

Learning visual context is a critical step of dynamic scene modelling. This paper addresses the problem of choosing the most suitable probabilistic model selection criterion for learning visual context of a dynamic scene. A Completed Likelihood Akaike’s Information Criterion (CL-AIC) is formulated to estimate the optimal model order (complexity) for a given visual scene. CL-AIC is designed to overcome poor model selection by existing popular criteria when the data sample size varies from very small to large. Extensive experiments on learning visual context for dynamic scene modelling are carried out to demonstrate the effectiveness of CL-AIC, compared to that of BIC, AIC and ICL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimising dynamic graphical models for video content analysis

A key problem in video content analysis using dynamic graphical models is to learn a suitable model structure given observed visual data. We propose a completed likelihood AIC (CL-AIC) scoring function for solving the problem. CL-AIC differs from existing scoring functions in that it aims to optimise explicitly both the explanation and prediction capabilities of a model simultaneously. CL-AIC i...

متن کامل

Unsupervised Learning of Gamma Mixture Models Using Minimum Message Length

Mixture modelling or unsupervised classification is a problem of identifying and modelling components in a body of data. Earlier work in mixture modelling using Minimum Message Length (MML) includes the multinomial and Gaussian distributions (Wallace and Boulton, 1968), the von Mises circular and Poisson distributions (Wallace and Dowe, 1994, 2000) and the distribution (Agusta and Dowe, 2002a, ...

متن کامل

Optimal Dynamic Graphs for Video Content Analysis

This study addresses the problem of learning the optimal structure of a dynamic graphical model for video content analysis given sparse data. We propose a Completed Likelihood AIC (CL-AIC) scoring function that differs from existing ones by optimising explicitly both the explanation and prediction capabilities of a model simultaneously. We demonstrate that CL-AIC is superior to existing scoring...

متن کامل

A Subspace Method for Maximum LikelihoodTarget

We present an unsupervised technique for visual target modeling which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. A computationally eecient and optimal estimator for a multivariate Gaussian distribution is derived. This density estimate is then used to formulate a maximum likelihood estimation framework for visual search and target detection. Our...

متن کامل

Incremental and adaptive abnormal behaviour detection

We develop a novel visual behaviour modelling approach that performs incremental and adaptive model learning for online abnormality detection in a visual surveillance scene. The approach has the following key features that make it advantageous over previous ones: (1) Fully unsupervised learning: both feature extraction for behaviour pattern representation and model construction are carried out ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005