Mapping of heavy metal ion sorption to cell-extracellular polymeric substance-mineral aggregates by using metal-selective fluorescent probes and confocal laser scanning microscopy.
نویسندگان
چکیده
Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe(3+), Cu(2+), Zn(2+), and Hg(2+), illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems.
منابع مشابه
Selective Sorption of Heavy Metal Ions from Aqueous Solutions Using m-Cresol Based Chelating Resin and Its Analytical Applications
Salicylic acid-Formaldehyde-m-Cresol (SFM) terpolymer had been synthesized in DMF media by conventional method. The resulting resin had been characterized by FTIR spectra, elemental and thermogravimetric analyses. The morphology of SFM resin had been studied by SEM and Optical photograph. Various parameters like rate of equilibration, effect of pH on ion exchange capacity and effect of conc...
متن کاملA novel quinoline molecular probe and the derived functionalized gold nanoparticles: sensing properties and cytotoxicity studies in MCF-7 human breast cancer cells.
A highly selective quinoline-based fluorescent sensor L was designed, prepared and used to monitor zinc ions in Goldfish (Carassius auratus) as model of vertebrate organism. Modified gold nanoparticles having functional quinoline molecules (GNPs@L) were also synthesized and their sensing properties towards different metal ions were also explored in solution, showing high selectively towards the...
متن کاملO-21: Differential Expression and Epigenetic Pattern of HOX Family Genes in Cumulus Cells of Mature MII Oocytes from Patients with Polycystic Ovary Syndrome
Background Ovarian tissue cryopreservation represents a promising strategy to preserve the ovarian function in cancer patients. It is usually performed by slow freezing/rapid thawing (SF/RT). Recent studies emphasize an ultrarapid cryopreservation procedure, vitrification/warming (V/W), since it might prevent damages due to ice crystal formation. Comparative studies between the cryopreservation...
متن کاملToxic metal removal from aqueous solution by advanced Carbon allotropes: a case study from the Sungun Copper Mine
The sorption efficiencies of graphene oxide (GO) and functionalized multi-walled carbon nanotubes (f-MWCNTs) were investigated and elucidated to study their potential in treating acid mine drainage (AMD) containing Cu2+, Mn2+, Zn2+, Pb2+, Fe3+ and Cd2+ metal ions. Several layered GO nanosheets and f-MWCNTs were formed via the modified Hummers’ method and the acid treatment of the MWCNTs, respec...
متن کاملA Nanostructured Polyelectrolyte Sensing System Based on Quenching Analysis for Micromolar Metal Ions Detection
We designed and developed a novel heavy metal ion sensing device, based on quenching mechanism, exploiting the characteristics of a polyelectrolyte nanostructured system, named nanocapsule[1]. Nanocapsule allows to entrap fluorescent probes sensitive to a specific metal ion, localizing fluorescent signal in a nano-bordered site within the outermost layers and improving the signal to noise ratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 79 21 شماره
صفحات -
تاریخ انتشار 2013