Saccharomyces boulardii Improves Intestinal Cell Restitution through Activation of the α2β1 Integrin Collagen Receptor
نویسندگان
چکیده
Intestinal epithelial cell damage is frequently seen in the mucosal lesions of inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. Complete remission of these diseases requires both the cessation of inflammation and the migration of enterocytes to repair the damaged epithelium. Lyophilized Saccharomyces boulardii (Sb, Biocodex) is a nonpathogenic yeast widely used as a therapeutic agent for the treatment and prevention of diarrhea and other gastrointestinal disorders. In this study, we determined whether Sb could accelerate enterocyte migration. Cell migration was determined in Sb force-fed C57BL6J mice and in an in vitro wound model. The impact on α2β1 integrin activity was assessed using adhesion assays and the analysis of α2β1 mediated signaling pathways both in vitro and in vivo. We demonstrated that Sb secretes compounds that enhance the migration of enterocytes independently of cell proliferation. This enhanced migration was associated with the ability of Sb to favor cell-extracellular matrix interaction. Indeed, the yeast activates α2β1 integrin collagen receptors. This leads to an increase in tyrosine phosphorylation of cytoplasmic molecules, including focal adhesion kinase and paxillin, involved in the integrin signaling pathway. These changes are associated with the reorganization of focal adhesion structures. In conclusion Sb secretes motogenic factors that enhance cell restitution through the dynamic regulation of α2β1 integrin activity. This could be of major importance in the development of novel therapies targeting diseases characterized by severe mucosal injury, such as inflammatory and infectious bowel diseases.
منابع مشابه
Saccharomyces boulardii Improves Intestinal Epithelial Cell Restitution by Inhibiting αvβ5 Integrin Activation State
Intestinal epithelial cell damage is frequently seen in the mucosal lesions of infectious or inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. Complete remission of these diseases requires both the disappearance of inflammation and the repair of damaged epithelium. Saccharomyces boulardii (Sb, Biocodex) is a non-pathogenic yeast widely used as a preventive and therapeut...
متن کاملUp-Regulation of Integrinsn α2β1 and α3β1 Expression in Human Foreskin Fibroblast Cells after In-Vitro Infection with Herpes Simplex Virus Type 1
The interaction of Herpes Simplex Virus type 1 (HSV-1) with human fetal foreskin fibroblast (HFFF) cell was studied using a recent isolate of HSV-1 which was propagated in Hep-2 cells. HFFF cells were challenged with HSV-1 with a multiplicity of infection (MOI) of 1 virus/cell for 24 hours. Flow cytometric analysis demonstrated that HSV-1 challenged HFFF cells expressed increased levels of α2β1...
متن کاملα2β1 Integrin, GPVI Receptor, and Common FcRγ Chain on Mouse Platelets Mediate Distinct Responses to Collagen in Models of Thrombosis
OBJECTIVE Platelets express the α2β1 integrin and the glycoprotein VI (GPVI)/FcRγ complex, both collagen receptors. Understanding platelet-collagen receptor function has been enhanced through use of genetically modified mouse models. Previous studies of GPVI/FcRγ-mediated collagen-induced platelet activation were perfomed with mice in which the FcRγ subunit was genetically deleted (FcRγ-/-) or ...
متن کاملα2β1 integrin regulates Th17 cell activity and its neutralization decreases the severity of collagen-induced arthritis.
Th17 cells play a critical role in the pathogenesis of rheumatoid arthritis (RA), but the mechanisms by which these cells regulate the development of RA are not fully understood. We have recently shown that α2β1 integrin, the receptor of type I collagen, is the major collagen-binding integrin expressed by human Th17 cells. In this study, we examined the role of α2β1 integrin in Th17-mediated de...
متن کاملDiscoidin Domain Receptors Promote α1β1- and α2β1-Integrin Mediated Cell Adhesion to Collagen by Enhancing Integrin Activation
The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that bind to and are activated by collagens. Similar to collagen-binding β1 integrins, the DDRs bind to specific motifs within the collagen triple helix. However, these two types of collagen receptors recognize distinct collagen sequences. While GVMGFO (O is hydroxyproline) functions as a major DDR binding motif in fib...
متن کامل